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Line Planning Optimization at DSB

Natalia J. Rezanova

Abstract Solving the line planning problem is one of the fundamental steps
in strategic planning of a railway operator. We present a cost-oriented line
planning optimization tool developed at a Danish railway operator DSB for
strategic planning and analysis purposes. Two line planning optimization mod-
els are presented, a cost-oriented integer programming model and a passenger-
oriented network flow model, which are combined in order to find line planning
solutions that minimize the cost of the line plan while keeping the passenger
travelling time low. The line planning optimization tool was successfully used
to generate and evaluate different line plans for the year 2016 DSB S-bane
railway schedule.

Keywords Danish railway · DSB · Integer programming · Line planning ·
Public transportation

1 Introduction

Given a railway infrastructure, a passenger origin-destination travel demand,
and a list of requirements to the level of service, the line planning problem
of a railway operator is to find a set of train lines with a ceratin line fre-
quency, which satisfy all requirements. A train line is a return trip between
two terminal stations with a certain halting pattern. The capacity of a line is
determined by its frequency and the rolling stock capacity assigned to the line.
A line with a high frequency and a high rolling stock capacity can transport
more passengers than the same line with a lower frequency and/or lower train
capacity. The availability of the rolling stock determines the total train capac-
ity that can be assigned to a line plan, while other oprational constraints, such
as the channel availability at different segments of the railway infrastructure,
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the minimum headways between trains, the lack of overtaking possibility, or
the limit to the number of turning trains at certain terminal stations, set a
limit to the frequency of the line.

Public service transportation operators have service agreements with the
authorities about a minimum service level of operations. DSB is a railway
operator responsible for the passenger traffic of all intercity trains as well as
the majority of all regional trains in Denmark. DSB has a contract with the
Danish Ministry of Transport, where the partners agree about a minimum
level of service per station (number of stops), per track segment (number
of trains per hour) and the minimum number of direct connections between
certain cities. The service agreement ensures availability of train departures
at all stations in Denmark, also those stations, which would otherwise not
be serviced by operators because the cost of service is much higher than the
ticket revenue. According to the service agreement (also called traffic contract),
DSB recieves a reimbursement from the Danish government for providing the
required level of service, even if it is not profitable otherwise. The service
requirements according to the traffic contract are therefore an important part
of the line plan.

Solving the line planning problem is a part of the longterm strategic plan-
ning process. Most railway operators try to keep their lines unchanged unless
it is absolutely necessary. The entire Danish rail network will undergo major
improvements during the next 15 years, including electrification, infrastructure
expansions, and replacement of the signalling systems. The line plans would
have to be adjusted accordingly. The line planning optimization tool was de-
veloped in DSB Longterm Planning department to be used for the year-to-year
strategic planning whenever a change to the line plan is required, as well as
for analysis connected to the service agreement negotiations between DSB and
the Danish Ministry of Transport.

This paper presents optimization models implemented in DSB line planning
tool, as well as an implementation example, showing how the tool was used to
generate and evaluate the year 2016 S-bane line plan scenarios.

2 DSB line planning optimization tool

As the comprehensive review of OR models within the line planning, Schöbel
(2012), points out, the line planning optimization problems fall into two cate-
gories: passenger-oriented models and cost-oriented models. Passenger-oriented
models focus on either maximizing the number of direct travellers (Bussieck
et al (1996)), minimizing riding time for the passengers (Pfetsch and Borndörfer
(2006), Borndörfer et al (2007)), or minimizing both passenger riding time and
line change time (Schöbel and Scholl (2006)) in a line plan. Cost-oriented mod-
els focus on minimizing operator’s costs of a line plan: Claessens et al (1998),
Goossens et al (2004), Goossens et al (2006).

We choose to adapt and expand one of the three formulation of the cost-
oriented line planning model described in Goossens et al (2006). This integer



programming model, called IPX , makes sure that within a given period of time
(typically one hour) the passenger demand is covered by a set of lines with
different patterns and frequency. The passenger flow is distributed according
to the known preferences, and each line is assigned a certain train capacity in
order to make sure that the total passenger demand is satisfied. The objective
function minimizes the operational costs calculated for the estimated train
units necessary to cover the passenger demand with the given line frequency.

There are three main reasons for choosing the model suggested by Goossens
et al (2006).

First, it allows considering multiple line types in the same optimization
run, and the passenger demand is not split between the line types. DSB train
lines have different halting patterns: fast and slow, regional and intercity. Re-
gional networks, such as S-bane, are dense and heavily used by commuters
who frequently change between fast and slow lines. Therefore, it is important
to solve the line planning problem for regional and commuter networks with-
out dividing the passengers into separate networks according to the so-called
system split procedure, which allows to solve the line planning optimization
problems independently for each train category, and is applicable for intercity
trains.

Second, the chosen integer programming formulation of the model can eas-
ily be extended by adding a set of operational and service constraints necessary
to obtain feasible line planning solutions for DSB. The definition of the train
capacity used by Goossens et al (2006) is extended to incorporate different
compositions of carriages, including combination of different fleet types. When
extended this way, the model allows to set a limit to the estimated number of
carriages used in the line plan or even to minimize the capacity in the plan.

Third, if the line planning optimization tool is to be used for what-if anal-
ysis in practice, the solutions must be obtained relatively quickly. The chosen
model formulation has a better complexity than many other line planning
models, and therefore allows to solve problems of medium network sizes to
optimality relatively fast without using advanced integer programming tech-
niques.

In order to compare the existing or manually generated line plans with the
optimization solutions, an additional feature of the tool allows to validate a
given solution built from a given line pool instead of generating line routes
automatically. The line planning optimization tool is implemented in JAVA,
and the integer programming model is solved using the MIP solver of MOSEK
v.7 (www.mosek.com).

3 Modelling

The railway infrastructure network, also called a track graph, G = (S,E) is
described by a set of stations S and a set of tracks E between stations. Every
station node has a type t indexed from 1 to tmax. The station type represents
the size of the station and determins the allowed halting patterns of the train



Fig. 1 Example of a type graph GT = (S,ET ).

lines at the station. The station type t = 1 is the lowest type, used for the
stations in small towns and villages along the railway network, while types
t > 1 represent larger towns and cities.

Based on the railway network G = (S,E) and the types of the stations in
S, we generate a type graph GT = (S,ET ), as defined in Goossens et al (2006).
Every edge in the type graph has at type t, indexed from 1 to tmax. The set
of edges ET1 contains all edges in E and has the type t = 1. Every edge of
type t > 1 in the type graph GT = (S,ET ) connects two closest stations of
the same or a higher type. A station wt is one of the closest stations of the
type to a station vt, if there exists a simple shortest path between wt and vt
in the underlying railway infrastructure network G = (S,E), which does not
contain any other stations of type that is higer og equals to t.

In a type graph example shown on Figure 1, a type 3 station d is connected
to the closest type 1 stations c and e by type 1 edges, to the closest type 2
station b by a type 2 edge, and to the closest type 3 stations a and f by type
3 edges.

Every type edge e ∈ ET can be expressed through a simple path P (e)
in the underlying network G = (S,E). In the above example, P ({a, d}) =
{{a, b}, {b, c}, {c, d}}.

Consider two type edges, e1 and e2. We say that a type edge e1 covers a
type edge e2 if P (e2) ⊆ P (e1). For example, edge {b, d} covers edges {b, c} and
{c, d}. The covering edge always has a higer type than the covered edge.

We define Φt(e) as a subset of edges in ET , which contains all edges of
type t that cover the edge e. For e = {b, c}, Φ2({b, c}) = {{b, d}}, while
Φ3({b, c}) = {{a, d}}.

Let L be the pool of possible train lines. In the present formulation of
line planning model CLPP (1) - (9), a line l ∈ L represents a return travel
between two terminal stations. The halting pattern of a line is represented by
a path in the type graph GT = (S,ET ). The path of the line does not have to
follow the edges of the same type, but can be a combination of different edge
types, and therefore a combination of different halting patterns in different
parts of the railway network. The halting pattern is, however, unchanged in
both directions of the line.

Let F l ⊂ {1, 2, ...} be a set of possible frequencies for the line l ∈ L. A
frequency f ∈ F l is defined for a certain period of time, for instance, one hour.



A set of rolling stock compositions Cl contains different combinations of the
rolling stock, which are possible to assign to a line l ∈ L. A composition c ∈ Cl
contains one or more carriages of one or more rolling stock types r ∈ R. Each
composition c ∈ Cl has therefore a known number of seats γc and a known
cost of driving, which depends on the rolling stock type and the number of
carriages in the train.

The line planning optimization problem is to find a cost-optimal combina-
tion of lines, frequencies, and rolling stock compositions assigned to the lines,
such that the passenger demand is met and all defined operational and service
constraints are satisfied.

For every combination (l, f, c) ∈ N we define a binary decision variable.
We use i ∈ N to refer to a parctucular combination of (li, fi, ci) ∈ N :

xi =

1 if the combination of line, frequency and composition
i = (li, fi, ci) ∈ N is in the optimal solution.

0 otherwise.

A decision variable xi has two cost components: an operational cost wcosti

and a passenger-related cost wpaxi .

For a given line circulation time and frequency, we calculate the minimum
number of trains necessary to cover the line. The circulation time of a line is
the total time in minutes that a train of line l ∈ L needs to complete its return
trip between two terminal stations, including the minimum turn time at the
terminal stations and a halting time at all intermediate stations. The minimum
number of trains necessary to cover the line within a given time period (let
us say, 60 minutes) is calculated as d circulation time×f

60 e, where f ∈ F l is the
frequency of the line. This calculation is beautifully illustrated in Goossens
et al (2004).

Knowing the driving time of the line, the minimum number of trains nec-
essary to cover the line, and a number of carriages of each rolling stock type
in every train, we can use three following operational cost components when
calculating wcosti for every xi:

1. The cost of having a specific line li in the solution.
2. The cost of using one carriage of a rolling stock type r ∈ R in the plan.
3. The cost of one train minute of driving the train, independently of the

train composition.
4. The cost of one rolling stock kilometer of driving each carriage in the com-

position.

A passenger-related cost wpaxi measures the unattractivenes of the combi-
nation (li, fi, ci) ∈ N from the passenger point of view. As a rule, train lines
with a higher frequency and a larger train capacity are more attractive to
the passengers. From an individual passenger’s point of view, the train line is
attractive when it it is fast and has as few stops along the way between the
passenger’s origin station O and the destination station D. We can therefore
assume that for every passenger OD-relation, the shortest path between O and
D in the type network represents the passenger’s most attractive line route.



In order to measure the attractiveness of the line from the point of view
of all passengers who would potentially use the train line, we introduce a
directed travel network GTA = (S,AT ) based on the type graph GT = (S,ET ),
where each edge e ∈ ET is replaced by two directed arcs, −→a ∈ AT and ←−a ∈
AT , running in opposite directions. Given an asymmetric origin-destination
(OD) matrix of passenger relations, and assuming that every passenger’s most
attractive route in the network is the shortest path in GTA = (S,AT ), we can
calculate the total passenger demand H(a) on every arc a ∈ AT in the directed
travel network GTA = (S,AT ).

Decision variables xi do not allow to change the assigned train capacity
along different parts of the line: since the line represents a return trip, the
same train capacity is assigned to the line in both directions. Due to this
assumption, we calculate the passenger demand H(e) of the type edge e ∈ ET
as the largest demand of the two corresponding arcs −→a ∈ AT and ←−a ∈ AT :
H(e) = max {H(−→a ), H(←−a )}. This assumption makes it possible to reduce the
number of decision variables in the model, while unfortunately introducing
a risk of assigning too much train capacity to the line plan in cases where
the difference between H(−→a ) and H(←−a ) is big for all edges in a parcitular
line route, and where it would make sense to use a different capacity in one
direction compared to the other direction of the line or change the capacity
at different line segments. Examples of such differences in demand are the
morning rush hours, where the passenger demand towards larger cities is larger
than the demand in the opposite direction. In practice, a rolling stock capacity
is driven by the passenger demand, and coupling and decoupling of carriages
happens either at the terminal stations of the line or at larger depot stations
along the line. The flexible train capacity assignment to the different segments
of the line is currently in the pipeline for implementation in the line planning
optimization tool.

The passenger-related cost wpaxi uses three user-defined parameters, which
are able to punish the unattractiveness of the decision variable xi indepen-
dently of the presence of other decision variables in the solution:

1. The frequency parameter, which is a negative number multiplied to the
frequency fi ∈ F of the combination i ∈ N .

2. The train capacity parameter, which is a negative number multiplied to
the number of seats γci in the train composition ci ∈ C.

3. The passenger demand parameter, which is a negative number multiplied
to the largest edge demand H(e) found on the path along the line li ∈ L.

Several alternative objectives can be achieved by altering the cost compo-
nents wcosti and wpaxi . By setting the cost of using one carriage to the same
positive number, while setting all other costs to zero, the objective function of
the model is transformed into finding a line plan that minimizes the number
of carriages assigned to the lines. A special case of this objective is to set the
cost of using a carriage to the number of seats γc in the train composition
ci ∈ Cl, while all other costs are set to zero. Then the objective function of
the model is transformed into minimizing the total line plan capacity. It is



Table 1 Notation and terminology used in CLPP

L set of lines, indexed l ∈ L.
F l set of line frequencies for a line l ∈ L, indexed f ∈ F l.
Cl set of train compositions for a line l ∈ L, indexed c ∈ Cl.
N set of combinations of lines, frequencies and compositions,

referred to by i = (li, fi, ci) ∈ N .
li line in the combination i ∈ N .
fi frequency in the combination i ∈ N .
ci train composition in the combination i ∈ N .
γci capacity of ci measured in the number of seats.
S set of stations, indexed s ∈ S.
si a station where the line li in i ∈ N halts or turns.
ET set of edges in the type graph GT = (S,ET ), indexed (e) ∈ ET .
t arc type, t = 1, ..., tmax.
ET1 set of edges in e ∈ ET belonging to a type t = 1, also represents the edges

in the track graph G = (S,E). ET1 ⊆ ET .
ei an edge in ET , which is part of the line li belonging to i ∈ N .
Φt(e) set of edges of type t which cover the edge e.
H(e) total passenger demand on edge e ∈ ET .
R set of rolling stock types, indexed r ∈ R.
ri rolling stock type that is part of the composition ci in i ∈ N .
αri number of carriages of the rolling stock type r ∈ R in capacity ci in i ∈ N .
Br number of carriages of type r ∈ R in the fleet.
Vmine minimum number of trains on a track e ∈ ET1 ⊆ ET .
Vmaxe maximum number of trains on a track e ∈ ET1 ⊆ ET .
Vmins minimum number of trains stopping at a station s ∈ S.
Vmaxs maximum number of trains stopping at a station s ∈ S.
Ψ(l) set of lines that cannot coexist with the line l ∈ L, Ψ(l) ⊂ L.
LΨ set of lines that contains in at least one of the sets Ψ(l). LΨ ⊂ L.

important to mention that the line planning model is by no means a rolling
stock optimization model, but these alternative objective functions are very
useful when different line plan scenarios are considered.

The cost component of having a specific line li in the solution is used in
scenarios where we want to minimize the number of lines with specific char-
acteristics. As an example, we can punish the lines starting and terminating
at certain stations or running in specific network regions. When the cost of
all lines is set to the same positive number, while all other costs are set to
zero, we can minimize the number of lines in the solution. By minimizing the
number of lines, we achieve a streamlined line plan, containing a small number
of lines with the same pattern and frequency, which is easy to remember for
the passengers.

By setting the operational cost component wcosti to zero, while keeping
a non-zero cost component wpaxi , the objective function is transformed into
minimizing the passenger unsatisfaction. Unfortunately, the model formulation
does not allow to optimize the passenger flow directly, and it is not possible to
minimize the number of line changes or the line change duration time for each
passenger relation. Some passenger-oriented line planning models allow to do



so, e.g. Schöbel and Scholl (2006), but the size of these models grows quite
heavily with the network size and the number of passenger OD-relations.

The integer programming formulation of the implemented cost-optimization
line planning problem (CLPP) is described below. Table 1 gives an overview
of notation and terminology used in the model.

(CLPP) min
∑
i∈N

(wcosti + wpaxi )xi (1)

s.t.
∑

i∈N |li=l

xi ≤ 1 ∀l ∈ L (2)

∑
i∈N |ei=e

γcifixi ≥ H(e) ∀e ∈ ET1 ⊆ ET (3)

∑
i∈N |ei=e

γcifixi +
∑
t>1

∑
i∈N |ei=e′∈Φt(e)

γcifixi ≥ H(e) +
∑
t>1

∑
e′∈Φt(e)

H(e′)

∀e ∈ ET1 ⊆ ET

∀Φ2(e), ...,∀Φtmax(e) (4)∑
i∈N |ri=r

αrixi ≤ Br ∀r ∈ R (5)

V mine ≤
∑

i∈N |ei=e

fixi ≤ V maxe ∀e ∈ ET1 ⊆ ET (6)

V mins ≤
∑

i∈N |si=s

fixi ≤ V maxs ∀s ∈ S (7)

∑
i∈N |li=l

xi +
∑

i∈N |li=l′∈Ψ(l)

xi ≤ 1 ∀l ∈ LΨ ⊂ L,∀Ψ(l) ⊂ L(8)

xi = {1, 0} ∀i = (li, fi, ci) ∈ N (9)

The objective function (1) minimizes the operational and passenger-related
costs as described above. Constraints (2) ensure that only one combination
i ∈ N with a specific line l ∈ L is chosen in the plan. Constraints (3) - (4)
are the so-called capacity-subset constraints. These constraints ensure that the
passenger demand in the line plan is satisfied. Constraints (3) are necessary
in order to ensure sufficient train capacity to those passengers who’s best
route contains one of the track edges (type 1 edges ET1 ). Constraints (4) are
generated for all combinations of Φt(e), t > 1. Each constraint then gives a
possibility for a passenger who’s best route contains one of the ”fast” edges of
type t > 1 to either use a capacity on one of the fast lines or on one of the slow
lines running along the type 1 edges. A detailed description and a proof of the
validity of the capacity-subset constraints (4) can be found in Goossens et al
(2006). Many network segments in the Danish railway network are represented
by a track graph, which is a simple path, just as an example shown on Figure
1. Therefore, the number of possible cover-subsets Φt(e) for each edge e is at



Fig. 2 Example of a solution network G∗ = (S,A∗, β), based on a line planning solution
containing two lines, where each arc a ∈ A∗ is illustrated with an edge.

most tmax for a substantial number of edges in the network, so the complexity
of the model is attractive compared to the traditional flow models.

Constraints (5) - (8) are added to ensure operational feasibility and service
requirements by the Ministry of Transport: Constraints (5) ensure that the
estimated number of carriages of each fleet type r ∈ R does not exceed a given
upper bound Br. Constraints (6) set upper and lower bounds to the number
of trains per track segment. Constraints (7) set upper and lower bounds to the
number of trains halting at a station. Constraints (8) make sure that only one
line is chosen from the set of lines, which cannot coexist in the same solution.
Finally, constraints (9) define the feasible region for the decision variables.

4 Measuring the passenger quality of the solution

4.1 Passenger travelling time

When the optimal line planning solution to CLPP is found, we can measure
the quality of the solution from the passenger point of view. With a given
line plan and a set of passenger OD-relations, we can calculate the passenger
flow along the type arcs in GTA = (S,AT ), given a fixed train capacity on
all arcs. For each edge e ∈ ET in the type graph GT = (S,ET ), we define
an edge capacity β(e) =

∑
i∈N∗|ei=e(fi · γi), where N∗ ⊆ N is the optimal

combination of the lines, frequencies and train compositions. Since the line
represents a return trip, the arc capacity of the corresponding arcs −→a ∈ AT
and ←−a ∈ AT is the same as the edge capacity β(e).

Let K be the set of all passenger OD-relations, and Mk be the demand of
the OD-relation k ∈ K. A capacitated network G∗ = (S,A∗, β) is a subgraph
of GTA = (S,AT ), containing the subset of arcs A∗ ⊆ AT with the positive
capacity β(a) > 0. All arcs in A∗ belong to at least on line in the optimal line
planning solution N∗.

Let us assume that the optimal solution to CLPP solved on the type graph
shown on Figure 1 contains two lines: l1 = {{a, b}, {b, c}, {c, d}, {d, e}, {e, f}}



and l2 = {{a, d}}. The first line is a slow line, stopping at all stations between
stations a and f . The second line is a fast non-stopping line between stations
a and d. Given this optimal line plan solution, the graph G∗ = (S,A∗, β) is
shown on Figure 2. Notice that the graph G∗ only contains edges used in the
line planning solution.

Given the capacitated network G∗ = (S,A∗, β), we define a linear flow
variable yk(v, w) for each k ∈ K and (v, w) = a ∈ A∗. Let d(v, w) be the
traveling time on the arc (v, w) = a including the halting time at the departing
station. In order to find the distribution of the passenger flow in the line
planning solution N∗, we solve the following multi-commodity network flow
problem with capacity constraints (MCNFC):

(MCNFC) min
∑
k∈K

∑
(v,w)∈A∗

d(v, w) · yk(v, w) (10)

∑
w∈S

yk(v, w)−
∑
w∈S

yk(w, v) =

 Mk if v = Ok ∈ S, ∀k ∈ K
−Mk if v = Dk ∈ S, ∀k ∈ K

0 if v 6= Ok, v 6= Dk, ∀k ∈ K
(11)

∑
k∈K

yk(w, v) ≤ β(v, w) ∀(v, w) ∈ A∗ (12)

yk(v, w) > 0, ∀yk(v, w) ∈ R,∀k ∈ K (13)

Objective function (10) minimizes the travel time for the passengers, while
the flow conservation constraints (11) distribute the passenger flow in the
network. The capacity in the network is ensured through constraints (12).

Let Ω(A∗, β) be the optimal traveling time in N∗, calculated by solving the
MCNFC. When constraints (12) are omitted from the model, it corresponds
to finding the shortest paths in the network for all commodities. The shortest
paths in the network G∗ = (S,A∗) correspond to the passengers’ best routes
in the given line plan found by CLPP. The optimal solution to this problem
gives the optimal traveling time for all passengers in a line planning solution,
given the unlimited capacity of the trains, and is denoted Ω(A∗).

By solving MCNFC without capacity constraints (12) on the graph GTA =
(S,AT ), we get an optimal flow solution Ω(AT ), representing the best routes
for all passengers with respect to the travel time, given the existence of all
possible line combinations with an unlimited capacity.

If Ω(A∗, β) = Ω(A∗) = Ω(AT ), then we found a cost-optimal line planning
solution CLPP, which is accidentally also optimal from passengers point of
view with respect to the passenger traveling time. If Ω(A∗, β) = Ω(A∗) >
Ω(AT ), then the cost-optimal line planning solution to CLPP contains enough
train capacity for all passengers to take their favourite route given the set of
lines in CLPP, but the choice of the lines is not optimal from the passenger
traveling time point of view. If Ω(A∗, β) > Ω(A∗), then the optimal solution
to CLPP is suboptimal from the passenger point of view with respect to the
travelling time.



Looking at the solution example on Figure 2 compared to the type graph
on Figure 1, it is clear that passengers travelling between stations d and f did
not get their favourite line routes in the solution, but would have to use the
line that stops at the intermediate station e. In this case one would expect
that at least Ω(A∗, β) > Ω(AT ). Since our example does not contain any train
compositions, line frequencies or the size of the passenger OD-relations, we
cannot say for sure if Ω(A∗, β) > Ω(A∗) or if Ω(A∗, β) = Ω(A∗).

4.2 Passenger train line changes

Passenger traveling time Ω(A∗, β) does not include the time necessary to
change platforms to change the train line or the waiting time between de-
partures. From a line plan, it is not possible to calculate the passenger waiting
time between the arrival of one line and the departure of the other, since the
timetable is not known. However, one can assume a minimum time necessary
for the passenger to change lines. Alternatively, the quality of the line plan
can be measured by the number of times a passenger needs to change train
lines along the route from O to D. In order to measure the quality of the line
plan with respect to the number of line changes we introduce a change-and-go
graph inspired by Schöbel and Scholl (2006).

Given an optimal line planning solution to CLPP, N∗, a set of stations S
and a set of passenger OD-relations K, we generate a change-and-go network
GCG = (V,ACG). The set of nodes V in the network contains two subsets: a
set of nodes V CG representing station-line pairs and a set of station nodes S,
representing passenger origin and destination stations. The set of arcs ACG

contains three types of arcs: travelling arcs between the nodes in V CG be-
longing to the same line, which represent the driving activities, change arcs
between the nodes in V CG belonging to the same station, which represent
the change of the line at the station s ∈ S, and origin-destination arcs be-
tween station nodes S and change-and-go nodes V CG, representing passengers
arriving or leaving the station.

A change-and-go graph example shown on Figure 3 is based on the line
planning solution shown on Figure 2. The thin dotting lines represent the
origin-destination arcs (for simplicity illustrated as edges), the thick dotting
lines are the change arcs, while the solid lines represent the travelling arcs.

The cost d(v, w) on travelling arcs is given by the travel time, while the
cost of change arcs is given by the time required for changing the lines. If
the travelling arcs have a capacity corresponding to β(v, w) = fi · γi, where
i ∈ N∗ is part of the optimal solution to CLPP, then solving the MCNFC
on the change-and-go graph would give the optimal passenger solution with
respect to the travel time and change time.

By setting a positive fixed cost only on change arcs, the objective function
of MCNFC transforms into finding the optimal number of line changes in the
solution N∗.



Fig. 3 Example of a change-and-go solution network GCG = (V,ACG), based on a line
planning solution shown on Figure 2, where each arc a ∈ ACG is illustrated with an edge.

5 Multi-criteria optimization heuristic

The two cost components wcosti and wpaxi in the objective function of CLPP
are contradictory: the passengers want more capacity, which is costly for the
operator. The goal of optimization is to find a line planning solution, where
passenger satisfaction is maximized while the costs are kept low.

We introduce a simple greedy heuristic, which attempts to find Pareto-
optimal solutions to CLPP by adjusting the weights in the objective function
iteratively. The challenge with this optimization is that the two optimization
objectives are not expressed within the same mathematical model. We can only
assume that the passenger-oriented solution to MCLFC would be improved by
altering the passenger-related cost component wpaxi of CLPP.

The heuristic is based on solving the optimization problems CLPP (1) -
(9) and MCNFC (10) - (13) iteratively with different values of the passenger-
related cost component wpaxi . By adjusting wpaxi , we achieve different solutions,
among which we only choose Pareto efficient ones.

Let W cost(N∗) be the operational cost value of the optimal CLPP solution
N∗. Let Ω(N∗) denote the optimal passenger travelling time Ω(A∗, β), which
is obtained by solving MCNFC on the capacitated type graph G∗ = (S,A∗, β)
built from the optimal solution N∗.

The purpose of the heuristic is to find a set of line planning solutions
Γ (N∗), where all solutions are Pareto efficient with respect to W cost(N∗) and
Ω(N∗).

The heuristic is presented in Algorithm 1. The algorithm begins by finding
Ω(AT ), which is the shortest travelling time for all passengers in the type
graph without capacity constraints GTA = (S,AT ). Ω(AT ) is found by finding
shortest paths for all passenger OD-relations in the network.

At every iteration j = 0, 1, ...Jmax of the algorithm, the CLPP is solved
with some values wpaxi (j), obtaining a solution N∗j with the operational cost
W cost(N∗j ). Then a MCNFC is solved, obtaining Ω(N∗j ). The initial values of
wpaxi (j) are set to zero, while the cost component wcosti (j) only includes the
real operational costs, i.e. no artificial weights and costs are added to it. The



Algorithm 1 Greedy multi-criteria optimization heuristic.

Input: type graph GT = (S,AT ), the shortest travelling time in the network Ω(AT )
Initialize j := 0, wpaxi (0) := 0

while j ≤ Jmax and Ω(N∗
j ) > Ω(AT ) do

wpaxi (j)← wpaxi (j − 1) +∆i
Find W cost(N∗

j ) by solving CLPP

Find Ω(N∗
j ) by solving MCNFC

if N∗
j is not dominated by any other solutions in Γ (N∗) then

Add N∗
j to Γ (N∗)

if N∗
j dominates any other solution N∗

k in Γ (N∗) then

Remove N∗
k from Γ (N∗)

end if
end if
Adjust ∆i
j ← j + 1

end while

values of wpaxi (j) are increased by a certain ∆i, which is adjusted along the
run of the algorithm. Adjustments and initial values of ∆i depend on the size
of the cost component wcosti (j) and on the solution values of N∗j . The way
of adjusting ∆i resembles adjusting the temperature in Simulated Annealing
metaheuristics.

If W cost(N∗j ) and Ω(N∗j ) are not dominated by any other solutions in
Γ (N∗), the solution N∗j is added to Γ (N∗). If solution N∗j dominates any
other solutions in Γ (N∗), those are removed from the set.

We use Ω(AT ) as one of the termination chriteria to the algorithm. The
algorithm terminates either when Ω(N∗j ) = Ω(AT ) or the maximum number
of iterations Jmax is reached.

6 Line planning 2016 for S-bane

Copenhagen S-bane is an isolated commuter network in the Greater Copen-
hagen area. Figure 4 shows the 2014 line plan on S-bane. The S-bane has 6
branches, a central section, and half circular segment intersecting with the
branches. The S-bane will be equipped with a Communication Based Train
Control (CBTC) signalling system by the end of 2018. Figure 5 outlines the
segments of the S-bane estimated to be equipped with CBTC before the be-
ginning of the 2016 schedule start.

Major network improvement projects are always a challenge for the railway
operators. The installation of the new signalling system on S-bane is not an
exception. Apart from the closures of network segments, which is mostly done
during the nighttime, the installation of the new signalling system requires an
upgrade of the rolling stock fleet and a train driver education. Not all drivers
were planned to be licensed for CBTC at the beginning of 2016. In order to
avoid inefficient train driver duties with short trips caused by the necessity
of driver changes between licensed and non-licensed drivers, the line plan can



Fig. 4 S-bane line plan 2014. Fig. 5 Network segments of S-bane estimated
to be equipped with CBTC until 2016.

be adjusted so there is as little overlap as possible between operations on two
signalling systems.

If the 2014 line plan was kept unchanged, there would be four lines running
under both signalling systems in 2016: the purple line E, the green line B, the
orange line C, and yellow line F. Efficient train driver duties contain as many
long trips as possible in order to avoid driver changes. A long trip is a round-
trip on one line. Based on the line plan 2014, many long trips in the driver
duties in 2016 would contain some parts of the network with CBTC, and some
parts of the network with the old ATC system. Since not all drivers would
be licensed to drive on CBTC, the duties would contain many short trips
between line terminal stations and Copenhagen Central station, where the
main driver depot is situated. It has been observed that many driver changes
at Copenhagen Central station contribute to not only more expensive duties,
but also are more vulnerable to disruptions.

Therefore, at the initial stage of the S-bane 2016 line planning optimization
project, the focus was entirely on obtaining a line plan with as few lines that
cover both signalling systems as possible. After the first runs, the objective
function was adjusted to minimize the total train driving time of the lines that
cover both signalling systems in order to be able to generate as few duty time
across the signalling systems as possible.

The optimization result of such a line plan is shown on Figure 6. For com-
parison, we evaluated five different manually generated line plan suggestions
for 2016, as well as the line plans for 2014 and 2015, with respect to the same



Fig. 6 S-bane line plan 2016 optimized with respect to minimizing the train driving minutes
on lines running across two signalling systems.

objectives. The evaluation showed that 3 of the 5 manually generated plans did
not satisfy all operational constraints, while the optimal line planning solution
contained over 30% less train driving minutes on lines that covered both sig-
nalling systems compared with the line plans for 2014 and 2015, respectively,
and 20% less than the two valid manual line plans. The generated plan mea-
sured a smaller passenger travel time than the other suggested solutions, but
had a larger number of passengers who would need a line change.

The new line plan was quite different from the 2014 line plan and the 2015
line plan shown on Figure 7, which was ready for production from Decem-
ber 2014. Drastic changes to the line patterns are not reasonable from the
passenger service perspective.

Furthermore, we received new information about the educational plans for
the drivers. We learned that all drivers belonging to the depots at Hillerød
and Køge stations (terminal stations of the current E line) were planned to be
licensed for the new signalling system prior the first day of operation of the
2016 schedule. Therefore, it would be wise to add lines connecting these two
depots in order to be able to generate long trips for licensed drivers.

Based on this information, the objective function of the line planning op-
timization was changed to penalize lines with following properties:

P1. Lines that connect Hillerød and Køge with other depots than themselves.
P2. Lines that are different from the lines in the 2015 schedule.



Fig. 7 S-bane line plan 2015.
Fig. 8 S-bane line plan 2016 optimized with
respect to connecting Hillerød and Køge de-
pots and minimizing difference from 2015.

We run a range of experiments with different parameters and weight com-
binations in order to determine a Pareto optimal set of solutions. The chosen
line planning solution is shown on Figure 8. Only 5% of train minutes in the
new plan belong to the lines penalized by P1, while less than 20% train min-
utes belong to the lines penalized by P2. The suggested 2016 plan is not as
good as 2015 plan from the passengers point of view, but the difference is
much smaller than compared to the five manually generated scenarios, which
were first suggested.

The described analysis were performed at the end of year 2014, with the
available information and desired objectives at that time. During the spring
of 2015 the situation changed. First of all, the delay of CBTC installation
plan means that the current 2015 line plan is still feasible until August 2016.
Second, hence the installation is delayed, there is enough time for all train
drivers to be trained, and the objectives which were important just half a year
ago, are no longer relevant.

The line planning optimization tool will be useful for S-bane scheduling
again in the near future, when the next change of the line plan would be
necessary due to future infrastructural changes on the network.



7 Future implementation

Not all line plans generated by the line planning tool can be transferred into
a feasible timetable. We used a simple timetable generator for evaluating the
feasibility of the timetable during the work on the year 2016 line plan for
S-bane, and used RailSys to simulate the timetable of the most promising
solutions. In case of infeasibility, we manually adjusted line planning solutions
and evaluated them in the line planning tool to make sure the changes did not
have a large impact on the solution quality. The line planning tool would be
advanced if some of the timetabling logic was incorporated into the constraint
set of the integer programming model. A fully integrated line planning and
timetabling optimization is another possibility.

Using the line planning tool to generate line plans for DSB intercity and
regional trains is currently in the pipeline. Some extra operational and service
requirements would need to be added to the model, such as the minimum level
of direct line connections between certain cities.

We are currently supervising a Ph.D. project at the Technical University
of Denmark, where a passenger-oriented line planning model is under develop-
ment. A combination of a cost-oriented model and a passenger-oriented model
would give DSB a powerful tool for strategic analysis.
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