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The Rapid Transit Frequency and Fleet Size Setting

Problem with Maximal Profit

Alicia De los Santos · Juan A. Mesa ·

Federico Perea

Abstract Metro and other Rapid Transit Systems (RTS) operate in cities and
metropolitan areas, and their planning presents specific characteristics when
compared to other railway networks. Often, the tracks of RTS lines are not
interconnected, so network design and line planning (except frequency setting)
are a unique step in the planning process. Then, frequency setting and fleet size
determination are a joint problem that, moreover, has to be solved repeatedly.
In this paper a mathematical programming model for this problem with the
maximization of the net profit as objective function is presented.

1 Introduction

The sequential railway planning process is based on the knowledge of travel
patterns, and mainly consists of four subsequent stages: network design, line
planning, timetabling, and vehicle and crew scheduling (Michaelis and Schöbel
(2009)). Network design consists of choosing, possibly from an underlying net-
work, the stops/stations and tracks connecting them. Line planning aims at
selecting, for each line, the two terminal stations, the itinerary, and the fre-
quency. Rapid transit systems have characteristics belonging to both railway
networks and public transit (Caprara et al (2007), Desaulniers and Hickman
(2007)). In public transit and, particularly in rapid transit, the first step in line
planning is to determine the routes of the lines, which implies the construction
of the infrastructure (stations and sections). The frequencies are chosen in the
second step. These two problems can often be solved jointly but, since the
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demand is time-dependent and elastic, the second one also has to be solved
for the different periods of the day, days of the week, seasons, or whenever the
demand changes. Because these demand changes, it is sometimes necessary to
modify the frequency and the composition of the trains. Frequency and fleet
size settings are two intertwined problems, and joint resolution seems to be
plausible.

The objective functions regarding line planning, applied in the academic
literature, can be grouped into two classes: customer oriented and cost oriented
(see, Schöbel (2012)). Within the first class, you find the number of direct trav-
elers, the traveling and riding time, and the number of transfers. In the second
one, there are fixed and variable costs. For operating companies, costs are not
the only factor to take into account. Low cost operations could not be prof-
itable. Moreover, in the last years, an increasing concern on sustainability in
transport planning can be observed. Thus, the relationship between costs and
incomes becomes relevant in decisions regarding transportation projects. One
way of evaluating this relationship is the net profit, defined as the difference
between the revenue and the total cost. Moreover, since revenue depends on
ridership, maximizing profit usually contributes to increasing the ridership,
which is one of the most popular indicators of efficiency. The demand is given
by an origin-destination matrix, and we also assume that a competing mode
is functioning on the same space. This is one of the points that distinguishes
our work from most of the line planning papers. We do not assume demand is
captive, but it depends on the time comparison with the competing mode. In
other words, ridership depends on the level of quality of the service offered.

The rest of the paper is structured as follows. Section 2 formally describes
our line planning problem, which is later modeled as a mathematical pro-
gramming program in Section 2.2. Because the model proposed is non-linear,
in Section 3 we deal with this model by solving a number of linear problems.
A computational experience in Section 4 finishes this paper.

2 The problem

2.1 Data and notation

In this section, we present the input data needed to define the Simultaneous
Frequency and Capacity Problem (SFCP).

– Given is a set of connected lines L = {ℓ1, . . . , ℓ|L|} in the RTS. Let N =
{i1, . . . , in} be the set of stations that constitute the lines in L. In railway
terminology, a line is characterized by two terminal stops, its itinerary and
the train size. Other important aspects of each line ℓ are its length, denoted
by lenℓ and measured in length units, and its number of stations associated,
denoted by nℓ. Thus, the itinerary of each line ℓ ∈ L can be represented
as {(i1, i2), (i2, i3), . . . , (inℓ−1, inℓ

)}, where i1, inℓ
are the terminal stations

of the line, and {i1, i2, i3, . . . , inℓ
} and {inℓ

, inℓ−1, . . . , i1} define the two
maximal paths of this line in the network.



– Each couple of (directed) arcs (ij1 , ij2) and (ij2 , ij1) define an (undirected)
edge {ij1 , ij2}. Let A be the set of (directed) arcs, and let E = {{i, j} :
i, j ∈ N, i < j, (i, j) or (j, i) ∈ A} be the set of edges defined from A.

– From these sets, we describe a RTS as the graph ((N,E),L).
– Let dij be the length of each arc (i, j) ∈ A. We assume dij = dji. The

parameter dij can also represent the time needed to traverse arc (i, j),
transforming distances in times by means of the parameter λ, which repre-
sents the average distance traveled by a train in a hour (commercial speed).
We assume the same value of λ for all trains. We consider a parameter νℓ
representing the cycle time of line ℓ, measured as the time needed for a
train of line ℓ to go from the initial station to the final station and returning
back. Thus, νℓ = 2 · lenℓ/λ.

– Let uci be the time spent in changing platforms at station i.
– Let W = {w1, . . . , w|W |} ⊆ N × N be a set of ordered origin-destination

(OD) pairs, w = (ws, wt). For each OD pair w ∈ W , gw is the expected
number of passengers per hour for an average day and uALT

w is the travel
time associated to w using the alternative mode, respectively.

– The passenger fare, the passenger subsidy (price that the government pays
to the operator company for each trip) and the total number of hours that
a train is operating per year are denoted by η, τ and ρ, respectively.

– The cost of operating one locomotive is cloc, and the cost of operating one
carriage is ccarr, both per unit of length. The crew cost ccrew per train and
year is also given.

– The purchase cost of one locomotive is Iloc, and one carriage is Icarr. We
assume in the horizon of ρ̂ years the purchase of trains is recovered. We
consider a minimum number ymin of carriages for each train.

– The capacity of a carriage is given by parameter Θ, measured in number
of passengers seating and standing.

– A finite set of possible headways H for lines of the Rapid Transit System
(RTS) is given.

2.2 Mathematical model

Our problem can be modeled as a mathematical programming program using
the following sets of variables:

– xℓ ∈ H is an integer variable representing the headway of line ℓ (time
between services, expressed in minutes).

– yℓ ∈ Z
+ is the number of carriages used by each train of line ℓ.

– uRTS
w > 0 represents the travel time of pair w using the RTS network.

– pRTS
w ∈ [0, 1] is the proportion of passengers of OD pair w using the RTS

network, which depends on the travel time using the RTS (variable uRTS
w )

and on the travel time using the alternative mode (parameter uALT
w ).

– fwℓ
ij = 1 if the OD pair w traverses arc (i, j) ∈ A using line ℓ, 0 otherwise.
Note that these variables are set to zero whenever (i, j) /∈ ℓ, to reduce the
size of the problem.



– twℓℓ′

k = 1 if demand of pair w transfers at station k from line ℓ to line ℓ′,
0 otherwise. Note that these variables are set to zero whenever k does not
belong to the two lines, nor when k is the origin or destination of pair w,
in order to reduce the size of the problem.

– Bℓ is the required fleet of line ℓ.

The objective is the maximization of the net profit zNET , defined as:

Maximize
[

ρρ̂(η + τ)
∑

w∈W

gwp
RTS
w (1)

− ρρ̂
∑

ℓ∈L

λBℓ(cloc + yℓ · ccarr)

−
∑

ℓ∈L

Bℓ(Iloc + Icarr · yℓ)

− ρ̂ ccrew
∑

ℓ∈L

Bℓ

]

The first term in (1) is the revenue zREV , which depends on the number of
passengers traveling (and therefore paying a ticket) in the RTS. The second
term computes the rolling stock cost: the cost of operating the trains, which
depends on the number of carriages. The last two terms are the fleet acquisition
cost and the crew operating cost, respectively.



The constraints of the problem are:

twℓℓ′

k ≥
∑

j:(k,j)∈ℓ

fwℓ
kj +

∑

i:(i,k)∈ℓ′

fwℓ′

ik − 1, w ∈ W, ℓ 6= ℓ′ ∈ L, k ∈ ℓ ∩ ℓ′, k 6= ws, wt

(2)

∑

ℓ∈L

∑

i:(i,k)∈ℓ

fwℓ
ik −

∑

ℓ∈L

∑

j:(k,j)∈ℓ

fwℓ
kj =







0, k ∈ N \ {ws, wt}
−1, k = ws

+1, k = wt

(3)

xℓ

∑

w∈W

gwp
RTS
w fwℓ

ij ≤ 60 ·Θ · yℓ, ℓ ∈ L, {i, j} ∈ E (4)

pRTS
w =

1

1 + e(α−β(uALT
w

−uRTS
w

))
, w ∈ W (5)

uRTS
w =

∑

ℓ∈L

∑

j:{ws,j}∈ℓ

xℓf
wℓ
wsj

2
+ (60/λ)

∑

ℓ∈L

∑

{i,j}∈ℓ

fwℓ
ij dij

+
∑

ℓ∈L

∑

ℓ′:ℓ′ 6=ℓ

∑

i∈ℓ∩ℓ′

twℓℓ′

i (
xℓ′

2
+ uci), w = (ws, wt) ∈ W (6)

Bℓ = ⌈120 · lenℓ/xℓλ⌉, ℓ ∈ L (7)

yℓ ≥ ymin, ℓ ∈ L (8)

uRTS
w > 0, w ∈ W

xℓ ∈ H, ℓ ∈ L

fwℓ
ij , twℓℓ′

k ∈ {0, 1}

k ∈ N, {i, j} ∈ E, (i, j) ∈ A, i ∈ N, ℓ ∈ L, w ∈ W.

Constraints (2) ensure that if an OD pair w enters station k ∈ N using
one line, and exits from this station using another line, then a transfer is done.
Constraints (3) are the flow conservation constraints. Constraints (4) impose
an upper bound on the maximum number of passengers that each line can
transport per hour, which depends on the number of carriages and headway
of this line. Constraints (5) represent the modal split, which uses the travel
time described in Equation (6). Constraints (7) establish the required fleets as
functions of the headways.

A lower bound on the number of carriages for each line is forced by Con-
straints (8).

The maximization of (1), subject to constraints (2)– (8), is a Mixed Integer
Non-Linear Programming (MINLP) program that solves our problem. The
non-linearities of this model will be specified, as well as some ways to avoid
them.



3 Algorithm

In this section we present an algorithm for solving the problem described in
Section 2, based on efficient approaches of the mathematical model.

As mentioned before, the MINLP presents several nonlinearities. In the
following, we describe such nonlinearities as well as the way in which we dealt
with them, so as to describe them as linear constraints.

1. In Constraints (4), the binary variable fwℓ
ij is multiplying the positive vari-

able pRTS
w . This product can be easily linearized, by defining a new set of

variables qwℓ
ij as follows:

qwℓ
ij ≤ fwℓ

ij , ℓ ∈ L, {i, j} ∈ ℓ, w ∈ W (9)

pRTS
w − (1− fwℓ

ij ) ≤ qwℓ
ij , ℓ ∈ L, {i, j} ∈ ℓ, w ∈ W (10)

qwℓ
ij ≤ pRTS

w , ℓ ∈ L, {i, j} ∈ ℓ, w ∈ W. (11)

2. The definition of the proportion of passengers using the RTS, Constraints
(5), uses the non-linear function logit. This nonlinearity is avoided by ap-
proximating the logit function by a linear function which takes into account
three intervals on its abscissa axis as follows. Let z be the variable uRTS

w

representing the travel time in the RTS and let F (z) = 1/(1 + exp(α −
β(uALT

w − z)) be the corresponding logit function for z. The piecewise lin-
ear function is defined as

P(z) :=







1, z < uALT
w − 2/β

−β/4z + (2 + βuALT
w )/4, z ∈ [uALT

w − 2/β, uALT
w + 2/β]

0, z ≥ uALT
w + 2/β.

3. The required fleet described in Constraints (7), uses the ceiling function,
which is non-linear as well, and the headway variables are in the denomi-
nator. This last nonlinearity can be avoided by fixing the headway of each
line as a parameter.

Let ILP (x1, ..., x|L|) be the model obtained after avoiding the two first non-
linearities, in which the headway of each line ℓ, xℓ ∈ H is fixed as a parameter.
The reader may note that the resulting program is an Integer Linear Program-
ming model.

Then, the algorithm presented in this section solves ILP (x1, ..., x|L|), for

all feasible combinations of headways (x1, ..., x|L|) ∈ H|L|, keeping as a final
output the best solution found. The solution procedure is shown in Algorithm
1.

4 Computational experiments

In this section we show a computational experience, conducted over three
different topologies, called 6 × 2, 7 × 3, and 8 × 3, where n × m means a



Data: Input for our problem
for each combination of headways (x1, ..., x|L|) do

solve ILP (x1, ..., x|L|);

end

Result: arg max
(x1,...,x|L|)

ILP (x1, ..., x|L|).

Algorithm 1: Pseudocode for the ILP-based algorithm.

network with n nodes and m lines. These topologies are described in figures
1, 2, and 3.

Ten instances were randomly generated for each configuration, having in
total 30 instances to solve, as follows. The number of passengers of each OD
pair w was obtained following a uniform distribution. To define each arc length,
the coordinates of each station were set randomly by means of another uniform
distribution. So, the arc length at each instance is different since each arc
connects to different positions of stations. The travel times uALT

w using the
alternative mode, were obtained by means of the Euclidean distance and a
speed of 20 km/h, whereas, the travel time in the RTS were obtained according
to the riding times with a speed of 30 km/h, the waiting time and the transfer
time. Costs (both purchase and operation) are based on the specific train
model Civia as in De-Los-Santos et al (2014). The parameters of the logit
function were set to α = −0.3 and β = 1, like in Maŕın and Garćıa-Ródenas
(2009). Table 1 summarizes the input data for our experiments.

All the calculations for Algorithm 1 were performed in GAMS/CPLEX, in
a computer with 8 Gb of RAM memory and 2.8 Ghz CPU.

The reader may note that these results heavily depend on the input data.
Our experiments aim at validating the algorithm. A real application (using
real data) will help us better understand its functioning. We also noted that
the variations in net profit and revenue are not large, when changing the con-
figuration. It is also interesting to note how the computational times increase
by one order of magnitude (roughly speaking) from the configuration 6x2 to
the configuration 7x3. Such increase is not as high when going from 7x3 to 8x3.
A more detailed analysis of these time increments is left for further research.
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The lines are defined as:
red line ℓ1 = {1, 3, 5, 6} and
blue line ℓ2 = {2, 3, 4}.

Fig. 1 Representation of 6× 2-configuration.
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The lines are defined as:
blue line ℓ1 = {2, 4, 5}, red line ℓ2 = {1, 4, 7}
and green line ℓ3 = {3, 4, 6}.

Fig. 2 Representation of 7× 3-configuration.
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The lines are defined as:
red line ℓ1 = {1, 3, 4, 6} ,
blue line ℓ2 = {2, 4, 5, 7},
green line ℓ3 = {4, 6, 8}.

Fig. 3 Representation of 8× 3-configuration.

Parameters

Name Description Value

ρ̂ years to recover the purchase 20
ρ number of operative hours per year 6935

cloc costs for operating one locomotive per kilometer [e/km] 34
ccarr operating cost of a carriage per kilometer [e/km] 2
ccrew per crew and year for each train [e/ year] 75 · 103

Iloc purchase cost of one locomotive in e 2.5 · 106

Icarr purchase cost of one carriage in e 0.9 · 106

Θ capacity of each carriage (number of passengers) 2 · 102

xℓ possible values {5,10,15,20}

Table 1 Model parameters for the experiment.



instance zNET zREV xℓ yℓ CPU time trips
6x21 3.20E+09 4.88E+09 [5,5] [3,2] 2.04 10049
6x22 3.69E+09 5.37E+09 [5,5] [3,2] 2 11054
6x23 4.80E+09 6.48E+09 [5,5] [3,2] 2.43 13341
6x24 4.43E+09 6.11E+09 [5,5] [3,2] 2 12591
6x25 3.04E+09 4.68E+09 [5,5] [3,1] 2 9649
6x26 5.08E+09 6.87E+09 [5,5] [5,2] 2,04 14148
6x27 4.42E+09 6.15E+09 [5,5] [4,2] 2.82 12672
6x28 4.27E+09 6.00E+09 [5,5] [4,2] 2.49 12357
6x29 3.96E+09 5.64E+09 [5,5] [3,2] 2.03 11608
6x210 5.65E+09 7.38E+09 [5,5] [4,2] 2.08 15195
7x31 4.00E+09 7.32E+09 [5,5,5] [3,2,2] 12.84 15075
7x32 2.96E+09 6.21E+09 [5,5,5] [2,2,2] 11.12 12783
7x33 3.55E+09 6.53E+09 [5,5,5] [3,2,2] 15.16 13447
7x34 2.65E+09 5.90E+09 [5,5,5] [2,2,2] 11 12151
7x35 3.75E+09 6.75E+09 [5,5,5] [3,2,2] 15.48 13904
7x36 4.51E+09 7.49E+09 [5,5,5] [3,2,2] 11.29 15423
7x37 2.72E+09 5.99E+09 [5,5,5] [3,1,2] 10.88 12334
7x38 5.07E+09 8.39E+09 [5,5,5] [3,2,2] 11.2 17280
7x39 3.37E+09 6.30E+09 [5,5,5] [2,2,2] 14.97 12976
7x310 4.82E+09 8.15E+09 [5,5,5] [3,2,2] 15.04 16779
8x31 2.88E+09 4.83E+09 [15,5,5] [1,3,1] 17.69 9946
8x32 2.66E+09 4.95E+09 [15,5,5] [1,3,1] 19.01 10198
8x33 2.33E+09 4.31E+09 [15,5,5] [1,3,2] 18.37 8881
8x34 2.73E+09 4.71E+09 [15,5,5] [1,3,2] 18.5 9709
8x35 2.35E+09 4.91E+09 [5,5,5] [1,3,1] 17.49 10118
8x36 3.04E+09 5.60E+09 [5,5,5] [1,3,1] 17.15 11544
8x37 3,11E+09 5.71E+09 [5,5,5] [1,3,2] 16.95 11753
8x38 3.17E+09 5.16E+09 [15,5,5] [1,3,2] 17.55 10623
8x39 3.22E+09 5.84E+09 [5,5,5] [2,3,1] 16.72 12031
8x310 3.53E+09 6.10E+09 [5,5,5] [1,3,1] 18.49 12561

Table 2 Summary of results for the mathematical model.


