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An optimisation framework for determination of capacity
in railway networks

Lars Wittrup Jensen

Abstract Within the railway industry, high quality estimates on railway ca-
pacity is crucial information, that helps railway companies to utilise the expen-
sive (infrastructure) resources as efficiently as possible. This paper therefore
proposes an optimisation framework to estimate the capacity of a railway net-
work based on a mix of train types, the infrastructure and rolling stock used.
The framework consist of two steps. In the first step the maximum number of
trains is found according to the predefined mix of train types. In the second
step additional trains are added based on weights assigned to the train types.
This is done using a mathematical model which is solved with a heuristic.
The developed approach is used on a case network to obtain the capacity of
the given railway system. Furthermore, we test different parameters to explore
computation time, precision and sensitivity to input of the approach.

Keywords Capacity · Networks · Railways

1 Introduction

Railway capacity is a scarce resource that has to be utilised in the best way
possible to satisfy demand and provide the best service for passengers and
freight customers. However, the capacity of a railway system is not easily
determined or even defined. This is a consequence of the interdependencies in
railway systems as capacity depends not only on the infrastructure, but also
on operational constraints and the rolling stock used.

In this paper, we propose an optimisation framework to estimate the ca-
pacity in a railway network, and thus provide the basis for better utilisation
of capacity. We define the capacity as the number of trains of each train type
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that is able to transverse the network under the predefined mix (of train types)
plus trains that additionally can be added. The solution is subject to the given
infrastructure, the train types, characteristics of the train types, a desired mix
of train types and the routes used within a defined threshold, Cmax, (to ac-
count for robustness). Following definitions from existing literature (Abril et al,
2008; UIC, 2004), it is possible to estimate both the theoretical and practical
capacity with the framework by adjusting the threshold (Cmax). Respectively,
theoretical capacity is the maximum capacity that can be utilised under per-
fect circumstances and practical capacity is the capacity that can be utilised
in daily operation. In this paper, we will mainly focus on practical capacity.
The proposed model does not require a timetable and is thus suitable for
the strategic level to evaluate infrastructure alternatives and provide capacity
estimates for e.g. line planning.

2 Previous and related approaches

Within the railway field, there already exist several methods to analyse railway
capacity. One of the most well-known is the UIC 406 method (UIC, 2013). This
method can be used to calculate the capacity consumption of line segments and
routes based on a timetable. The method is used throughout Europe due to its
simplicity. Contrary to the aim of this paper, the UIC method cannot be used
to determine the capacity of railway system on its own. It can, however, be
extended in many ways. For instance by saturating a timetable with additional
trains. Or couple it with timetable planning methods to form a closed loop
where a timetable is generated and subsequently assessed with the UIC 406
method.

Timetabling within railways is very related to capacity due to a large de-
pendency between the two. The timetable problem, that is generating a feasible
(and possible optimal) timetable, is a topic given much research attention. Due
to the dependency between timetabling and capacity, timetabling methods can
be used indirectly to estimate capacity. However, this is not an ideal approach
as the resulting capacity will rely heavily on the input given to the timetable
generator and thus the structure of the generated timetable. Additionally, long
computation times makes it undesirable to run a timetable generator a given
number of times to find the maximum capacity.

In addition to timetable generators, many models and tools exist that
can be used to saturate existing timetables (which can be empty) with addi-
tional trains, locate bottlenecks and estimate stability of a generated timetable.
These can be used to estimate the number of trains that can traverse a given
network under a set of operational constraints. However, these models are
more suitable on a tactical level as they require a significant amount of input.
For an overview of these models and tools we refer to Abril et al (2008).

Recently, the work of Burdett and Kozan (2006); de Kort et al (2003);
Mussone and Wolfler Calvo (2013), deals explicitly with the determination of
capacity in railways. These approaches are suitable for strategic planning as



they require no timetable. de Kort et al (2003) uses a probabilistic approach
using max-plus algebra to determine the capacity of railway infrastructure.
The approach is based on the bottleneck approach which determines the crit-
ical section (bottleneck) that limits the capacity of the system considered.
The approach does not explicitly account for different train types. However,
it is possible to implement this by using the probability that train will be
of a given type. Inspired by the work of de Kort et al (2003), Mussone and
Wolfler Calvo (2013) present an optimisation framework to maximize the total
number of trains in the railway system based on train conflict probabilities,
where different train types can be considered. de Kort et al (2003); Mussone
and Wolfler Calvo (2013) are able to include knock-on delays in the railway
system in a simple way. Lastly, Burdett and Kozan (2006) describe and discuss
terms for absolute capacity and utilisation levels based on sectional running
times of train types, dwell times and proportional mix of train types. Based on
these, they propose an optimisation model to maximize the number of trains
in a railway network. The model proposed is non-linear and is therefore only
solved to a local maximum (Burdett and Kozan, 2006). The approach by Bur-
dett and Kozan (2006) is quite flexible and is able to capture a large amount of
operational characteristics. Furthermore, the approach is able to give a lower
and an upper bound for capacity. Common for the approaches by de Kort et al
(2003); Mussone and Wolfler Calvo (2013) is that they do not depend on the
exact train sequence, but rather consider a weighted average. Thus, in a net-
work with heterogeneous operation the average absolute capacity is obtained,
and this capacity might therefore be increased by bundling trains.

3 Method

Unlike existing methods, described in the previous section, our optimisation
framework is based on a model that estimates the capacity consumed by a
given set of trains. Using this model in our optimisation framework makes
it possible to capture the distribution of capacity in railway networks with
heterogeneous operation as the capacity can be measured relative to how many
trains sequences should be feasible. The capacity consumption model used
in the framework is briefly described in the following section 3.1, while the
optimisation framework is described in section 3.2.

3.1 Model for calculation of capacity consumption

In the following section, we shortly describe our model used to calculate the
capacity consumed by a given set of trains. For a more in-depth description of
the model see Jensen et al (2015).

The purpose of the model is to calculate the capacity consumed by a given
set of trains in a railway network. We define the capacity consumption as the
ratio between the time a train mix in a given sequence occupy the network



 

   

0

10

20

30

40

50

60

70

80

90

100

40 50 60 70 80 90 100 110 120 130 140 150 160 170

C
um

ul
at

iv
e 

[%
]

Capacity consumption [%]

Permutation with lowest  
capacity consumption 

Permutation with highest capacity consumption 

~54% of the permutations can be scheduled 

Fig. 1 Cumulative capacity consumption distribution.

and the time period considered. This is similar to the compression method to
obtain infrastructure occupation known from the UIC406 method (UIC, 2013).
In a network with different train types and heterogeneous running times the
capacity consumption will differ depending on the sequence (order) of the
trains considered. For instance, if trains of the same type are bundled the con-
sumption is low, while the consumption is high if they are mixed (unbundled).
As capacity consumption differs depending on the sequence of trains, the ca-
pacity consumed by a given set of trains in no particular order is therefore a
distribution of capacity consumption rather than a single value.

An example of a capacity consumption distribution is shown in figure 1.
The y-axis show the cumulative percentage. This percentage show how many
of the possible permutations of train sequences that fit within the capacity
consumption depicted on the x-axis. In the remainder of this paper, we will
denote the cumulative percentage as the the percentile, p, while the capacity
consumption is denoted by C. For a specific set a trains X the maximum
capacity consumed at a percentile, p, is denoted as C(X, p). For instance
in figure 1, approximately half of the analysed train sequences are feasible
(C(X, 54) = 100%). That is, the 54th percentile (close to the median) is below
100% capacity consumption, where sequences yielding capacity consumption
values larger than 100% are infeasible.

For our capacity consumption model, the input is the number and type of
trains, the network, routes as well as minimum headway times and running
times. The infrastructure is represented by a mesoscopic infrastructure model
that makes it possible to model double and single track as well as junctions.

For each possible unique train sequence, the trains are scheduled strictly
according to this train sequence with fixed train routes, and the capacity
consumed is measured. The model is not dependent on the exact timetable as
an input, as every permutation of train sequences are considered. The output



is the capacity consumed by each unique train sequence and thus a distribution
as depicted in figure 1 when train types are heterogeneous.

For larger problem instances every permutation cannot be calculated due
to factorial computational complexity. In that case sampling of random per-
mutations is therefore used to reduce computation time. Furthermore, some
sequences are not desirable from a demand point of view and can therefore be
discarded.

Train sequences yielding capacity consumption values of 100% or close
will not be feasible in practice due to the stochastic behaviour of railway
systems (resulting in delays and thereby higher consumption). The aspect
of robustness is included in the model by using a stochastic simulation. In
each iteration of this simulation, initial delays are added to the deterministic
output of the model and the delay propagation is calculated. Initial delay
perturbations are obtained by sampling from one or more delay distributions.
The output is the capacity consumption including delay. If the (stochastic)
capacity consumption result is higher than 100%, the consumption of capacity
is not robust. However, in the optimisation framework presented in this paper,
we only use the deterministic version of the model due to significantly increased
running times in the stochastic version.

3.2 Optimisation framework

The optimisation framework for the determination of capacity, proposed in
this paper, is shown as a flowchart in figure 2. As stated in the introduction
(section 1), we define the capacity as the number of trains respecting a given
train type mix plus additional trains that the network can handle under a
predefined threshold, Cmax. A high threshold will result in a less robust sys-
tem than for lower thresholds as there will be less buffer times. As mentioned
earlier, the optimisation framework relies on the capacity consumption model
described in section 3.1. However, the framework can be used with any method
or model that evaluates the capacity consumed by a given set of trains in a
given network. Although, it will not be possible to derive the capacity span
if the alternative model is not able to calculate the distribution of capacity
consumption. If this is indeed the case, existing models may be more suit-
able (see section 2). If an alternative method is used for capacity consumption
determination in the optimisation framework it must fulfill the following re-
quirements:

– If an extra train is added to a network the capacity consumed will never
decrease compared to the previous solution (without the extra train)

– Likewise, if a train is removed the capacity consumed will never increase

Not all models fulfills these requirement. For instance, models where schedul-
ing decisions is made by slowing down fast trains and/or re-routing trains, the
addition of a train might lead to a lower capacity consumption.
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Fig. 2 Proposed framework.

The proposed optimisation framework consists of three steps which will be
described in the following:

Step 0: In this step, the data is loaded and an initial solution is generated.
This initial solution generated is the minimum solution respecting the given
mix. For instance with four train types constrained to a mix of 20-30-10-40%,
the initial solution will be 2, 3, 1 and 4 trains of each type, respectively.

The capacity consumption threshold, Cmax, is an important input to the
framework. This will be 100% if the maximum theoretical capacity has to be
obtained or less if the maximum practical capacity has to be obtained. As
mentioned earlier, the maximum practical capacity is the maximum capac-
ity that can be utilised if the operation has to remain stable when smaller
delays occur. The UIC (2013) has made recommendation for maximum capac-
ity consumption for stable operation. For instance, 75% in the peak hour for
heterogeneous operation.

As described in section 3.1, the output from the capacity consumption cal-
culation is a distribution of capacity consumption when train operations are
heterogeneous. Thus in the optimisation a percentile, p, of this cumulative dis-
tribution has to be chosen to obtain one single capacity consumption figure, C.
The 0th percentile will yield the maximum number of trains (upper bound),
while the 100th percentile will yield the minimum number of trains (lower
bound). A natural choice would be the 50th percentile or the 100th percentile
(lower bound). Due to sample variance it is however not recommended to use
the 0th and 100th percentiles. A span of capacity, as multiple of predefined
mix plus additional trains, can be derived by executing the optimisation sev-



eral times with different percentiles, for instance for the 5th, 50th and 95th
percentiles.

Step 1: In this step, the capacity respecting the train mix is estimated. First
the capacity consumption of the initial solution is calculated. If the capacity
consumption calculated, C, is higher than the threshold Cmax, it is not possible
to schedule the given train mix with the threshold, Cmax, and percentile, p,
chosen. However, it will still be possible to add trains in step 2.

The train mix is given for the calculations in step 1, and thus the solution
space will usually be quite small, due to the large train increments necessary
to respect the train mix. A simple incremental approach is therefore used as
the number of iterations are very few (in most cases below 5).

Step 2: As described in step 1, the train mix induces large increments in
the number of trains. There might therefore be a large excess of capacity as
the last feasible solution found in step 1 might have a capacity consumption,
C, well below Cmax. Thereby, we assume that adding a train of type i, will
lead to a benefit of wi. In step 2, we therefore saturate the solution from step
1 with additional trains. For this purpose we use the following mathematical
model:

maximize

n∑
i=1

(wi · xi)

subject to xi ≥ 0 ∀i ∈ {1, 2, ..., n}
C(X + Y, p) ≤ Cmax

Where X = (x1, ..., xi, .., xn) is the decision variables for step 2. That is the
number of extra trains of each train type. Y = (y1, ..., yi, .., yn) is the number
of trains found in step 1. wi is the weight of each train type, with 1 ≥ wi ≥ 0
and

∑n
i=1(wi) = 1. The percentile, p ∈ {0, 1, ..., 100}, determines the ratio

of possible sequences that should consume capacity less than or equal to the
capacity threshold, Cmax. As described earlier, a high percentile will yield a
lower capacity result as more train sequences has to be feasible compared to
a low percentile. C(X + Y, p) is the function (the model described in section
3.1 or an alternative) that calculates the capacity consumption given a set of
trains, X + Y , and a percentile p.

The optimisation problem defined above looks simple. Unfortunately, it
is not straightforward to solve since the constraint C(X + Y, p) ≤ Cmax is
computationally expensive to evaluate. Thus, to solve the problem we need to
construct an algorithm that finds good solutions, and desirably the optimal
solution, with a minimum amount of evaluations of C(X + Y, p).

It is well known that a homogeneous train mix provides the possibility to
run more trains than a heterogeneous train mix. Based on this characteristic,
we use a greedy heuristic to search for solutions with as many trains of type as
possible. The greedy heuristic is described in pseudocode in algorithm 1. The
search works by considering the train types after weight in descending order.
For each train type as many trains as possible are added. This will yield an
upper bound on how many trains of a single train type can be added. This



solution is subsequently improved, if possible, by adding as many trains as pos-
sible of the remaining types by weight. In a network such an improvement will
generally be possible due to certain train types having little or any interaction
with one another.

Algorithm 1: Pseudocode for greedy heuristic.

Data: Weights, wi ∈ X
Result: X∗ = (x1, ..., xi, ..., xn) a solution that maximize

∑n
i=1(wi · xi)

x∗
i = 0 ∀i ∈ {1, ..n}

for i ∈ X in descending order of wi do
xi = 0 ∀i ∈ {1, ..n} // Reset solution

xi = dSearch(i) // Find maximum amount of trains to add

for j ∈ X in descending order by w do
if j 6= i then

xj = dSearch(j)
end

end
X∗ = max(obj val(X), obj val(X∗)) // Set best solution

end
return X∗

To determine how many trains that can be added of single train type, given
a start solution, we use a dichotomic search algorithm which is an extension
of the well-known binary search algorithm. The search is a divide-and-conquer
algorithm that works by dividing the search interval into two parts at each
iteration. For our problem the search works by initially determining a upper
bound on the search interval. That is, a bound on the number of trains of a
train type that yields an infeasible solution. Given this bound we know that
the best feasible solution is in the interval between 0 and this upper bound. A
good upper bound is close to the best solution. A bad upper bound will result
in extra iterations which are computationally expensive due to the simulation
model used to evaluate the capacity consumed. To test if it is even possible
to add a train of the given type, the upper interval bound is initially set to
1. If one train yields an feasible solution, this is used as the lower interval
bound, and the upper interval bound is increased by a guess. The guess is an
estimate of how many trains that can be added of a single type. A good guess
will provide a good upper interval search bound. Given that it is the same
train type that is added, a guess could be based on the headway divided by
the time period. This will result in the number of trains of the type in a total
homogeneous situation.

When the upper interval bound has been found the search for the maxi-
mum number of trains is started. For each iteration the number of trains of
the train type to be tested for feasibility is the midpoint between the lower
interval bound and upper interval bound. If the tested number of trains yields
an infeasible solution, the upper interval bound is set to the tested number
of trains. If an feasible solution is found the lower interval bound is set to
the tested number of trains. The algorithm is stopped after convergence and



the best (maximum number of trains) is returned. This dichotomic search
algorithm is also described in pseudocode in algorithm 2.

Algorithm 2: dSearch(i) Pseudocode for dichotomic search.

Data: i ∈ X: train type for which as many trains as possible should be
added

X = (x1, ..., xi, ..., xn), Y = (y1, ..., yi, ..., yn): current solution
p: percentile
Cmax: capacity consumption threshold
Result: x∗

i maximum number of trains that can be added
x∗
i ← 0

guess← guess on upper interval bound
intervalLowerBound← 0
intervalUpperBound← 1
/* Find a upper bound on how many trains of type i that can

be added */

loop← true
while loop do

xi ← intervalUpperBound
// If infeasible

if C(X + Y, p) > Cmax then
loop← false // Upper bound for interval found

else
// If feasible

intervalUpperBound = intervalUpperBound + guess
if xi > x∗

i then
x∗
i ← xi // Save as current best

end

end

end
/* Use binary search to find the maximum number of trains

that can be added of type i */

xi ← binarySearch(intervalLowerBound, intervalUpperBound)
return x∗

i

The greedy algorithm used finds the optimal solution if the solution space
is concave and in certain cases convex. However, as the solution space might be
neither convex or concave, the optimal solution can be a point in the solution
space that is not a corner point. To investigate how the solution space looks,
two simple cases are considered where all feasible solutions are constructed.
The two simple cases, we consider is a line (only one link) which is traversed
by two heterogeneous train types and an extended line traversed by three train
types. In the extended line which is composed of three links in sequence, one
train type runs on all three links and the two other runs only on a single, but
different, link. The line case is the simplest possible. The extended line case is
an extension which is constructed to investigate the solution space when there
are train types that does not have conflicts.
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Fig. 3 Solution space on a railway line with two heterogeneous train types. 0th, 50th and
100th percentile depicted. The dashed box depicts an arbitrary restricted solution space.

The simple line case is shown in figure 3. As observed in the figure the
solution space is concave. This means that only the corner points compose the
convex hull of the solutions given a linear objective function. Thus, the optimal
solution will be either (12,0) or (0,12) depending on the weights defined and
if no mix solution has been found in step 1. If a mix solution has been found
in step 1, the solution space will be restricted (no train types with 0 trains)
and the extreme points are therefore cut off (shown as a dashed box in figure
3). However, the convex hull will still be composed by the corner points in the
restricted solution space (due to the concave property).

The extended line case is shown in figure 4. As it can be observed in the
figure the solution space is concave in two of three planes, just as for the line
case. In the last plane the solution space is convex, which means that it is
possible to add extra trains to some of the solutions in this plane with out
removing trains of the other types. This is caused be the fact that two of the
train types only run on one link which is not the same. It is therefore possible
to saturate some of the solutions with extra trains. However, it should be noted
that while this does not increase the deterministic capacity consumption, it
will most likely increase the stochastic capacity consumption as buffer times
are removed.

While figure 3 and 4 show solutions spaces which has desirable properties
in form of a concave or rectangular (convex) solution space, then figure 5
show a solution space that is neither convex or concave. This solution space
stems from the extended line case for the 25th percentile instead of the 50th
percentile (median) depicted in figure 4. Thus in some cases the solution space
will be neither convex or concave and an optimal solution is therefore not
necessarily composed by a corner point. Therefore, we can conclude that the



 

  

Fig. 4 Solution space on an extended line with three heterogeneous train types. 50th per-
centile depicted.

 

   

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

T
ra

in
s 

of
 ty

pe
 C

Trains of type A

Fig. 5 Solution space which is neither concave or convex. 25th percentile for A,B-
combination in the extended line case.

solutions found be our greedy heuristic are not necessarily optimal and thus
optimality of the generated solutions cannot be guaranteed.
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4 Case study

In this section, we apply the proposed optimisation framework to a network
consisting of 161 kilometres of double track, at-grade and out-of-grade junc-
tions and four terminal stations. In one hour, the goal is to estimate the num-
ber of trains the network can handle under a given mix plus additional trains
maximizing utility (sum of weights). The network is depicted schematically in
figure 6 with tracks used in normal operation.

Table 1 shows an overview of the train types that should traverse the
network and their route. The train types are heterogeneous in running time,
especially between T4 and J3 where the slowest train type (RE-A) is 17 min-
utes slower than the express train type that uses 31 minutes between T4 and
J3. For the case a minimum (block) headway time of 150 seconds is used.

Table 1 Train types in the network with routes used.

Train type Route
1: Express train 1: T4(4) → T3(2)
2: ↪→ 2: T3(6) → T4(2)
3: IC-A 1: T4(4) → T3(2)
4: ↪→ 2: T3(6) → T4(2)
5: IC-B 3: T4(3) → T1(1)
6: ↪→ 4: T1(3) → T4(1)
7: RE-A 5: T4(4) → T3(3)
8: ↪→ 6: T3(5) → T4(1)
9: RE-B 7: T3(4) → T1(2)
10: ↪→ 8: T1(3) → T3(1)
11: Freight 9: T4(3) → T2(2)
12: ↪→ 10: T2(1) → T4(2)

This case study mainly serves as a basis for theoretical experiments to
explore how the optimisation framework performs. In section 4.1, we test dif-
ferent sample size to investigate the impact on the resulting capacity figures.
Furthermore, we report some computational statistics. In section 4.2 we use
the mix and weights listed in table 1 to test different capacity thresholds and
the appertaining capacity results. The optimisation is executed on a Windows
7 desktop PC with an Intel Core i7-2600 (3.4 GHz) CPU with 8 GB of RAM.
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4.1 Sample size and computational results

To investigate the impact of sample size on capacity results, we have tested
three different sample sizes for the capacity consumption model. The mix and
weights used are equal, thus no train type is given more importance than the
others. 1, 5 and 10 million samples are tested using 75% (UIC recommendation
(UIC, 2013)) as the capacity threshold, Cmax, for the 5th, 25th, 50th, 75th and
95th percentile. As described earlier using the 0th and 100th percentile is not
advisable due to variance in the capacity consumption model. Furthermore,
the different percentiles represent how many percent of all permutations of
train sequences that can be scheduled within the capacity threshold.

The test runs show that the three different sample sizes yield the same
results for all percentiles. However, for the 25th percentile convergence were
not obtained for 5 and 10 million samples as the 1 hour calculation threshold
was exceeded, these results are therefore discarded. Given that the results are
the same for the three sample sizes, it is concluded that using more than 1
million samples is not necessary for the case considered.

For the five percentiles calculated two unique results are found. For the 5th
and 25th percentile the given mix can be scheduled once, that is one of each
train type. In addition to this 2 extra trains of type 3, 1 train of type 4 and 11
trains of type 9 can be scheduled within the threshold with an objective value
of 1.27. For the 50th, 75th and 95th percentile, the mix cannot be scheduled.
However, 18 trains of type 3 and 18 trains of type 4 can be scheduled with an
objective value of 3 within the capacity consumption threshold of 75%.

Figure 7 shows the amount of time used in each step of the algorithm for
the five percentile tested with a 1 million sample size. In the figure, it can
be observed that the calculation is completed significantly faster for the 50th,
75th and 95th, than for the 5th and especially the 25th percentile. The first
step is completed equally fast for all the five percentile, however the best so-
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lution in step 2 is found much faster for the 50th, 75th and 95th percentile
which is also illustrated in figure 8. This is caused by the fact that for the
5th and 25th percentile the mix could be scheduled. This leads to a hetero-
geneous solution compared to the 50th, 75th and 95th percentile, where only
two train types compose the solution. Due to this heterogeneity, the capac-
ity consumption model has considerably longer running times for the 5th and
25th percentiles, which then propagate to the running times of step 2 in the
optimisation framework. For all the percentiles the calculation terminates af-
ter 211-245 iterations, as also seen in figure 8, thus this is not the reason for
the longer running times for the 5th and 25th percentile.

The cause of the longer calculation time for the 25th percentile compared
to the 5th percentile is not clear. However, in figure 8 it can be observed that
the solution is only improved significantly after approximately 140 iterations.
For the 5th, 50th, 75th and 95th percentile this happens already within 15
iterations. Thus the greedy heuristic used in step 2 evaluates a different set
of solutions for the 25th percentile than 5th percentile. This leads to longer
running times for the 25th percentile as the solutions examined takes longer
to time to evaluate.

4.2 Mix and capacity threshold

From the results in the previous section, we conclude that a sample size of
1 million is sufficient for the case we consider. Using this sample size, we
investigate the capacity results for different capacity consumption thresholds
for the 5th, 25th, 50th, 75th and 95th percentile. The thresholds examined
are 75%, 90% and 100%. The 75% is the UIC recommendation for lines with
mixed traffic in the rush hour (UIC, 2013). 100% is the absolute maximum and
can only be utilised under perfect conditions, that is no delays can occur. The
75% by UIC is given for line sections and is not a suitable threshold for routes



and networks as the capacity consumption is higher when the whole network
is considered instead of only a line section (Jensen et al, 2015). Therefore
a threshold of 90% is also examined, which is considered the most realistic
threshold of the three. Furthermore, we do not use an equal mix and equal
weights for the train types, but differentiate them as listed in table 2.

Table 2 Train types in the network with route used, mix percentage for step 1 and weights
for step 2 optimisation.

Train type Mix Weight
1: Express train 1/16 3/26
2: ↪→ 1/16 3/26
3: IC-A 1/16 2/26
4: ↪→ 1/16 2/26
5: IC-B 1/16 2/26
6: ↪→ 1/16 2/26
7: RE-A 1/16 1/26
8: ↪→ 1/16 1/26
9: RE-B 2/16 1/26
10: ↪→ 2/16 1/26
11: Freight 2/16 4/26
12: ↪→ 2/16 4/26

Table 3 Results with three different capacity thresholds for five different percentiles. Num-
bers in parentheses is extra trains added in step 2.

Cmax 75% 90% 90% 90% 100% 100% 100%
Percentiles 5-95th 50-95th 25th 5th 75-95th 50th 5-25th
Mix scheduled • • • •
Train type Number of trains (extra trains added in step 2)
1 0 0 1 2 (1) 0 1 2 (1)
2 0 0 1 1 0 1 1
3 0 0 1 1 0 1 1
4 0 0 1 1 0 1 1
5 0 0 1 1 0 1 1
6 0 0 1 1 0 1 1
7 0 0 1 1 0 1 1
8 0 0 1 1 0 1 1
9 0 0 16 (14) 2 0 18 (16) 2
10 0 0 2 2 0 2 2
11 16 (16) 19 (19) 2 9 (7) 22 (22) 2 11 (9)
12 18 (18) 21 (21) 2 5 (3) 24 (24) 2 7 (5)
Mix - objective 0 - 5.2 0 - 6.2 1 - 0.5 1 - 1.7 0 - 7.1 1 - 0.6 1 - 2.3

In table 3, the results of the capacity calculation is shown. Within a ca-
pacity threshold of 75%, it is not possible to schedule a mix and 16 trains of
type 11 and 18 trains of type 12 is therefore scheduled yielding an objective
value of 5.2. These are the freight trains that have the highest weight of all the
types. As the mix cannot be scheduled the final solution with the freight trains
is very homogeneous and a total of 34 trains can therefore be scheduled. For



the 90% capacity consumption threshold it is possible to schedule the mix for
the 5th and 25th percentile, but not the 50th, 75th and 95th percentile. For
the 100% threshold it also possible to schedule the mix for the 50th percentile.
In addition to this it is possible to add extra trains in all solutions (usually
freight trains as they have the highest weight) as listed in table 2.

Contrary to what could be expected, the total capacity increases for the
90% and 100% threshold with percentile. However, this is only when consid-
ering the number of trains. Results are as expected, when capacity figures are
written as the number of times a train mix can be scheduled plus additional
trains that can be added given a certain objective value.

5 Conclusions

In this paper, we have proposed an optimisation framework for the estimation
of capacity in a railway network. The approach is able to determine the number
of times a certain mix of train can be scheduled within a capacity consumption
threshold, Cmax. Additionally, it is estimated how many trains that can be
added to this mix solution according to predefined train type weights until the
capacity threshold, Cmax, is met. Differentiated weights makes it possible to
prioritise certain types as there may be higher demand for these.

In railway networks with heterogeneous operation the capacity consumed
depends on the sequence (order) of trains. As this is unknown in early planning
phases, our framework is able to give a span of capacity based on the relative
amount of train sequences that should be feasible.

For a Danish long distance network of 161 kilometres of double track lines,
the capacity can be estimated in 2-3 minutes in most of the test instances used.
However, it may take up to 18 minutes in the worst case. Thus for strategic
planning the model runs quite fast and should therefore be able to handle
larger test instances than used for this paper.

In the second step of the framework, where additional trains are added, as
many trains as possible is added of one single type. This is a natural conse-
quence of the problem formulation and the heuristic used in this second step.
This will usually not be desirable as solutions might contain a very high pro-
portion of one train type. For further work, we therefore suggest to work with
an alternative formulation of the mathematical model to ensure that not only
one train type is added in the second step. And furthermore, to ensure direc-
tional symmetry between two train types that are ”the same” just reversed.

For the second step of the framework a simple greedy heuristic is used to
find the best solutions. However, this greedy heuristic is not the best approach
to find the best solutions as the solution space is not necessarily concave
or convex. For future work, we therefore suggest to test metaheuristics to
improve the solutions found by the greedy heuristic. Although, it may increase
calculation times.

Lastly, we propose to use the stochastic version instead of deterministic
version of the capacity consumption model which forms the core part of the



framework. This will yield more realistic capacity results that includes the
aspect of robustness much better. However, this requires improvements in
calculation time of the stochastic version of the model, which we are currently
working on.
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