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Timetabling and Passenger Routing in Public Transport

Ralf Borndörfer · Heide Hoppmann ·
Marika Karbstein

Abstract The task of timetabling is to schedule the trips in a public transport
system by determining periodic arrival and departure times at every station.
The goal is to provide a service that is both attractive for passengers and can
be operated economically. To date, timetable optimization is generally done
with respect to fixed passenger routes, i.e., it is assumed that passengers do not
respond to changes in the timetable. This is unrealistic and ignores potentially
valuable degrees of freedom. We investigate in this paper periodic timetabling
models with integrated passenger routing. We propose several models that
differ in the allowed passenger paths and the objectives. We compare these
models theoretically and report on computations on real-world instances for
the city of Wuppertal.
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1 Introduction

The strategic planning process in public transport is usually subdivided into
consecutive planning steps of network design, line planning, and timetabling.
In each of these planning steps there are two main objectives, namely, min-
imization of operation costs and minimization of passenger discomfort. The
latter objective is usually measured in terms of quantities such as travel time,
number of transfers, or transfer time, that depend on travel choices, whose
forecast in turn requires a consideration of human behavior. This is clearly
just as difficult as it is important. The integration of passenger behavior into
network design, line planning, and timetabling models is therefore a major
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challenge in public transit optimization. First approaches have been made
in the area of line planning: Integrated line planning and passenger routing
models have been proposed by Schöbel and Scholl (2006), Borndörfer et al
(2007), and Borndörfer and Karbstein (2012), the last reference reports also
on successful computations.

Timetable optimization has mostly been studied with respect to a fixed
passenger routing based on path lengths in the network, see, e. g., Liebchen
(2006), Lindner (2000), and Nachtigall (1998). Passengers, however, usually
choose their routes depending on the timetable. This topic has been taken up
only recently. For aperiodic timetabling, Schmidt (2012) studies the complex-
ity of integrating passenger routings. She develops an exact solution approach
for the case where the first and last train of each passenger path are fixed,
see also Schmidt and Schöbel (2014). The only approaches to integrated pas-
senger routing and periodic timetabling that we are aware of are the Master
theses of Kinder (2008), Lübbe (2009), and Siebert (2011). Kinder investigates
a heuristic approach that is based on a time-expanded event-activity network.
Iteratively computing timetables and rerouting the passengers, the method
converges towards a local optimum. Lübbe proposes an integrated quadratic
model and linearizes it to obtain an integer linear programming model. His
computations indicate a potential for travel time improvements but he could
only deal with very small instances. Siebert provides worst case error analy-
ses and compares an integrated integer programming model with an iterated
approach.

The aim of this paper is to investigate the impact of routing decisions on
timetable optimization in analogy to the work of Pfetsch and Borndörfer (2006)
for the line planning case. To this purpose, we propose an integer program-
ming approach to the integrated timetabling and passenger routing problem.
We compare the differences between arbitrary passenger routings and passen-
ger routings on shortest paths w.r.t. the network. Like most passenger-oriented
models, these approaches minimize the total travel time for all passengers in
the sense of a system optimum. This can lead to timetables in which the
average travel time for all passengers is small, while some passengers are heav-
ily disadvantaged. We therefore propose to consider also the maximum travel
time. We test our models on real-world instances for the city of Wuppertal.

2 Periodic Timetabling with Fixed Passenger Routing

Most models in the literature for the periodic timetable problem are based
on the periodic event scheduling problem (PESP) developed by Serafini and
Ukovich (1989). We consider the following extended version. We are given
a directed graph N = (V,A), the event-activity network. The nodes V are
called events and represent arrivals and departures of lines at their stations,
i.e., V = Varr ∪ Vdep. The arcs A ⊆ V × V are called activities and model
driving between stations, waiting at stations, and possible transfers between
lines at stations, i.e., A = Adrive ∪Adwell ∪Atrans. Further, we are given lower



and upper time bounds `a, ua ∈ Q≥0, respectively, for the duration of activity
a ∈ A. Passengers can start and end their trips in Vdep and Varr, respectively.
The passenger demand is given in terms of an origin-destination matrix (OD-
matrix) (dst) ∈ Q≥0 specifying for each pair (s, t) ∈ Vdep × Varr the number
of passengers that want to travel from s to t. Let D = {(s, t) ∈ Vdep × Varr :
dst > 0} be the set of all OD-pairs and for an OD-pair (s, t) let Pst be the set
of (s, t)-paths in N and P :=

⋃
(s,t)∈D Pst be the set of all passenger paths.

A periodic timetable π : V → R determines arrival and departure times
at all arrival and departure nodes, respectively, that are assumed to repeat
periodically w.r.t. to a period time T ∈ R≥0. Given x ∈ R, we define the
modulo operator by [x]T := min{x + zT : x + zT ≥ 0, z ∈ Z}. We call a
timetable feasible if the periodic interval constraints

[πw − πv − `a]T ∈ [0, ua − `a] ∀ a = (v, w) ∈ A

are satisfied. We assume w.l.o.g. that `a < T and ua − `a < T for all a ∈ A.
Let P ′st ⊆ Pst and P ′ :=

⋃
(s,t)∈D P ′st ⊆ P be subsets of passenger paths

that model routing restrictions. For a feasible timetable π, the time duration
of activity a ∈ A is given by xa := `a + [πw−πv − `a]T , and the time duration
or travel time of a passenger path p ∈ P ′ is xp :=

∑
a∈p xa. If yp passengers

travel on path p ∈ P ′, the total travel time of all passengers is
∑
p∈P′ xpyp. The

goal is to find a feasible timetable such that the total travel time, assuming
passengers travel on shortest paths in P ′, is minimized.

Introducing timetable variables πv for the timing of event v, xa for the
duration of activity a, and passenger variables yp for the number of passengers
that travel on path p ∈ P, we can state the following mixed-integer non-linear
program with congruence relations for the integrated passenger routing and
timetabling problem:

(PTT) min
∑

(s,t)∈D

∑
p∈P′

st

∑
a∈p

dst xa yp

s.t. [πw − πv − `a]T ≤ ua − `a ∀ a = (v, w) ∈ A (1)

[πw − πv − `a]T + `a = xa ∀ a = (v, w) ∈ A (2)∑
p∈P′

st

yp = 1 ∀ (s, t) ∈ D (3)

πv ≥ 0 ∀ v ∈ V (4)

yp ≥ 0 ∀ p ∈ P ′. (5)

The model (PTT) minimizes the total passenger travel time. Constraints (1)
guarantee a feasible timetable. Constraints (3) enforce the passenger flow.

We remark that conditions (1) and (2) can be formulated in terms of linear
constraints, using additional integer periodic offset variables for each activity,
see, e.g., Liebchen (2006). An alternative linearization, which we use for our
computations in Section 5, is obtained by transforming the event-activity net-
work into a time-expanded event-activity network, see, e.g., Kinder (2008).



2.1 Timetabling Models

We derive variants of (PTT) by specifying the set of passenger paths and
including capacity constraints.

We obtain a shortest path routing model (SPR) by setting P ′ := P, i.e.,
the passengers travel along the shortest path w.r.t. travel times induced by
the timetable. In the lower-bound routing model (LBR), on the other hand, P ′
contains for each (s, t) ∈ D only the shortest path w.r.t. the lower bounds of

the activities. That is P ′st := arg min
{∑

a∈p `a : p ∈ Pst
}

.

To derive capacitated versions of these models, we include a capacity κa ∈
Q≥0 for each activity a ∈ A and require that the passenger flow does not
exceed it by adding the following constraints:∑

(s,t)∈D

∑
p∈P′

st:a∈p

dst yp ≤ κa ∀ a ∈ A. (6)

The capacitated multi-path routing model (κ-MPR) is obtained by setting P ′ :=
P and including the capacity constraints (6). For the capacitated unsplittable
path routing model (κ-UPR) we also set P ′ := P and include the capacity
constraints (6). Additionally, we require yp ∈ {0, 1} for all p ∈ P, that is, all
passengers corresponding to an OD-pair (s, t) ∈ D have to travel on the same
(s, t)-path.

3 Minimizing the Total Travel Time

In this section, we investigate the influence of routing restrictions on the travel
time minimum and, later, study the impact of an alternative objective.

We use the following further notation. Denote by v(M ; I) the optimal ob-
jective value of a model M ∈ {SPR,LBR, κ-MPR, κ-UPR} and an instance I.
We denote by

gap(M1,M2) := sup
I

v(M1; I)

v(M2; I)

the gap between the optimal objective values of the models M1 and M2, where
the supremum is taken over all instances I. The definitions of the models imply
immediately for any instance I:

gap(LBR,SPR) ≥ 1 ⇔ v(SPR; I) ≤ v(LBR; I) (7)

gap(κ-UPR, κ-MPR) ≥ 1 ⇔ v(κ-MPR; I) ≤ v(κ-UPR; I).

We show in the following that there are instances such that the inequali-
ties (7) are strict and that, indeed, the gap can be arbitrarily large.

Theorem 1 gap(LBR,SPR) =∞.
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Fig. 1 Instance for Theorem 1.

Proof Consider the directed graph D in Figure 1. D has 2n + 2 nodes and
2n+ 1 + n+ 1 = 3n+ 2 arcs, n ∈ N. Based on D we construct a timetabling
instance I by associating the nodes with stations and the arcs with driving
activities of lines (to be defined in a minute); arcs corresponding to transfer
and dwell activities are omitted in Figure 1.

We define activity times as follows. For all transfer activities, the lower
time bound is zero and the upper time bound is T ∈ N. The lower and the
upper time bound of all line dwell activities at each station is zero. For each
line driving activity the lower time bound equals the upper time bound. Hence,
this timetable problem reduces to determining for each line the departure time
at its first station and to routing the passengers.

We associate n + 2 lines with the arcs of D. There is one line from s to t
(dotted arc) with a driving time of T and no intermediate stations. There is a
second line (solid arcs) from s to t with 2n intermediate stations. The driving
time between the stops of this line is alternatingly ε := T−1

2n+1 and T . Between
every two stations, for which the driving time of the second line is T , there
is another line with a driving time of only ε (dashed arcs). There is only one
passenger that wants to travel from s to t.

First consider model (LBR). In any solution of (LBR), the passenger is
routed along the unique shortest (s, t)-path with respect to the driving time
and transfer times of zero. This path uses all upper arcs with a driving time
of ε and would have a total length of (2n+ 1)ε = T − 1, if the transfer times
at all stations would be zero. However, there is no feasible timetable for this
instance such that the transfer time at every station in this path is zero. In
particular, in any solution of (LBR), the transfer times at stations 2 and 3
sum up to

T − ε

as for every following pair of stations along this path. Hence, the travel time
for this path is in total T − 1 +n(T − ε) and v(LBR; I) = T − 1 +n(T − ε). In
an optimal solution to (SPR) the passenger travels on the bottom line with a
travel time of T for any timetable and, hence, v(SPR; I) = T . We can conclude
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Fig. 2 Instance for Theorem 2. All arcs in this graph have a capacity of k.

that

v(LBR; I)

v(SPR; I)
=
T − 1 + n(T − ε)

T

= n+
(T − 1)(1− n

2n+1 )

T
−→
n→∞

∞,

which proves the claim. ut

Theorem 2 gap(κ-UPR, κ-MPR) =∞.

Proof Consider the directed graph D in Figure 2. Similar to the proof of
Theorem 1, we construct a timetabling instance I based on D. This instance
contains 2k + 2 lines, k ∈ N. 2k lines are represented by the dotted arcs
{(s0, si)}1≤i≤k and {(wi, t)}1≤i≤k. Then there is one line (dashed arcs) starting
in s1 and ending in wk and the last line (solid arcs) is from v1 to vk. Again,
the time bounds for all dwell activities are zero, the lower bound for transfer
activities is zero, and for all driving activities the lower time bound equals
the upper time bound. In particular, the duration of all driving activities is
ε > 0 except for the activity corresponding to the arc (vk−1, vk) that has
a duration of 2ε. All transfer and dwell activities have infinite capacity. All
driving activities have a capacity of k. We set the passenger demand to dsi,t = 1
for each 1 ≤ i ≤ k− 1, and we set ds0,t = k; all other demands are set to zero.

First consider problem (κ-UPR). For any timetable, the passengers that
want to go from si to t travel along paths that must start with the arc (si, vi),



for all 1 ≤ i ≤ k− 1. Then, these arcs have only k− 1 capacity left and cannot
be used any more by the k passengers that want to go from s0 to t. These
passengers have to travel via the path (s0, sk, vk, wk, t) since it is the only
(s0, t)-path with sufficient capacity that is left. These passengers block the arc
(vk, wk), such that all passengers that want to go from si to t, 1 ≤ i ≤ k − 1,
must transfer at some node vi, 1 ≤ i ≤ k − 1 (different from vk). The dashed
and the solid line are constructed in such a way that the sum of the transfer
times at nodes vk−1 and vk is at least T − ε. Moreover, the transfer times at
nodes vi, 1 ≤ i ≤ k − 1, are all identical. Hence, there is a minimum total
transfer time of all passengers of at least (k − 1)(T − ε), while the minimum
total driving time is at least (k − 1)3ε + k · 4ε. If the passengers from si to
t travel along the paths (si, vi, wi, t), these values can indeed be achieved by
synchronizing the dashed and the dotted lines at node vk, namely, the solid
line can depart at v1 at time 0 and the dashed line can depart at s1 also at 0.
Hence, the minimum total travel time (achieved for this timetable) is

v(κ-UPR; I) = (k − 1)3ε+ k · 4ε+ (k − 1)(T − ε) = 6kε− 2ε+ kT − T.

In an optimal solution to (κ-MPR), the passengers from s0 to t can split and
travel along k− 1 paths via vi, 1 ≤ i ≤ k− 1. The transfer time in an optimal
timetable for these passenger paths at vi can be zero for all 1 ≤ i ≤ k (the
solid line can depart at v1 at time ε and the dashed line can depart at s1 at
time 0). The minimum total travel time for all passengers is therefore

v(κ-MPR; I) = (k − 1)3ε+ k · 4ε = 7kε− 3ε.

We set ε := 1
k and can conclude that

v(κ-UPR; I)

v(κ-MPR; I)
=

6kε− 2ε+ kT − T
7kε− 3ε

=
6− 2

k + kT − T
7− 3

k

−→
k→∞

∞.

This finishes the proof. ut

4 Minimizing the Maximum Travel Time

In this section we consider an alternative objective function, namely to min-
imize the maximum travel time among all passengers. To this purpose, we
introduce an additional model variant. The min-max travel time shortest path
routing model (SPRmax) is obtained from SPR by adding a variable τmax ∈ R,
representing the maximum weighted travel time among all OD-pairs, and a
corresponding constraint∑

p∈P′
st

∑
a∈p

dst xa yp ≤ τmax ∀ (s, t) ∈ D

and by changing the objective function to

min τmax.



For a problem M ∈ {SPR,SPRmax} and an instance I let opt(M ; I) be the
set of time duration variables x and passenger variables y that give rise to an
optimal solution. Then we denote by

τmax(M ; I) := max

 ∑
p∈Pst

∑
a∈p

dst x
∗
a y
∗
p : (s, t) ∈ D, (x∗, y∗) ∈ opt(M ; I)


the maximum weighted travel time among all OD-pairs in any optimal solution
and by

τ total(M ; I) := max

 ∑
(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
∗
a y
∗
p : (x∗, y∗) ∈ opt(M ; I)


the maximum total weighted travel time of all passengers induced by the
timetable in any optimal solution to M for instance I. Note that by definition

v(SPRmax; I) = τmax(SPRmax; I)

v(SPR; I) = τ total(SPR; I)

τmax(SPRmax; I) ≤ τmax(SPR; I)

τ total(SPR; I) ≤ τ total(SPRmax; I)

holds for every instance I. We denote by

gapmax(SPR,SPRmax) := sup
I

τmax(SPR; I)

τmax(SPRmax; I)

the gap between the maximum weighted travel time among all OD-pairs in
any optimal solution of the models SPR and SPRmax, respectively, and by

gaptotal(SPRmax,SPR) := sup
I

τ total(SPRmax; I)

τ total(SPR; I)
,

the gap between the maximum total weighted travel travel time in any optimal
solution of the models SPRmax and SPR, respectively. The supremum is taken
over all instances I.

Theorem 3 gapmax(SPR,SPRmax) =∞.

Proof Consider the directed graph D in Figure 3. D has 3k nodes and 4k − 2
arcs, k ∈ N. Based on D we construct a timetabling instance I as follows.
Again, we set the upper and lower bounds on the duration for all activities
such that this timetabling problem reduces to determining for each line the
departure time at its first station and to routing the passengers (fixed durations
for all driving activities, zero duration for all dwell activities). We associate
two lines with the arcs of D. There is one line (dashed arcs) from s1 to vk with
a driving time of ε = T+1

k , T ∈ N, on each driving activity. The second line
(solid arcs) starts in v1 and ends in tk. The duration for each driving activity
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Fig. 3 Instance for Theorem 3.

of this line equals ε except for the second last arc from tk−1 to vk that has
a driving time of T . We set the passenger demand for each OD-pair (si, ti),
1 ≤ i ≤ k, to one; all other demands are set to zero.

For each OD-pair (si, ti) ∈ D, 1 ≤ i ≤ k, there exists only a single path
from si to ti via the node vi. Hence, the driving time for each OD-pair is
2ε for any timetable. The dashed and the solid line are constructed in such
a way that the transfer times at nodes vi, 1 ≤ i ≤ k − 1, are all identical.
Moreover, if the two lines are synchronized at node vk, then the transfer times
at nodes vi, 1 ≤ i ≤ k− 1, are all equal to ε. This would yield a total transfer
time of (k − 1)ε = T − T+1

k + 1. If a timetable synchronizes the lines at the
nodes vi, 1 ≤ i ≤ k − 1, on the other hand, the transfer time at node vk is
T − ε = T − T+1

k .

First consider problem (SPR). In an optimal solution, the departure time
of the dashed line in s1 is 0 and the solid line departs in v1 at ε, such that
the two lines are synchronized at the nodes vi, 1 ≤ i ≤ k − 1. The resulting
transfer time for the pair (sk, tk) at vk equals T −ε. Hence, this OD-pair yields
the maximum travel time of T + ε among all OD-pairs for this timetable.

In an optimal solution to problem (SPRmax), the lines are synchronized at
node vk by setting the departure time of the dashed line at s1 to 0 and the
departure time of the solid line at v1 to 2 ε. The resulting transfer time for
each OD-pair (si, ti) at vi with 1 ≤ i ≤ k − 1 is ε and for the pair (sk, tk)
the transfer time at vk is zero. The travel time for all OD-pairs (si, ti) with
1 ≤ i ≤ k − 1 is 3 ε, which gives the maximum travel time. We can conclude
that

τmax(SPR; I)

τmax(SPRmax; I)
=
T + ε

3ε
=
T + T+1

k

3T+1
k

=
(k + 1)T + 1

3T
−→
k→∞

∞,

which proves the claim. ut

Note that the total travel time of the (SPR) solution is τ total(SPR; I) =
(k − 1)2ε+ T − ε = 3T + 2− 3T+1

k and the total travel time of the (SPRmax)

solution is τ total(SPRmax; I) = (k − 1)3ε+ 2ε = 3T + 3− T+1
k .
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Fig. 4 Instance for Theorem 4.

Theorem 4 gaptotal(SPRmax,SPR) =∞.

Proof Consider the directed graph D in Figure 4. D has 3k nodes and 4k − 2
arcs, k ∈ N. Based on D we construct a timetabling instance I as follows. We
associate 2 lines with the arcs of D. There is one line (dashed arcs) from s1 to
tk with a driving time of ε = 1

k on each arc except the second last arc with a
driving time of 2ε. The second line (solid arcs) starts in v1 and ends in vk. The
driving time for each arc of this line equals ε. We set the passenger demand
for each OD-pair (si, ti), 1 ≤ i ≤ k, to one and zero otherwise.

For each OD-pair (si, ti) ∈ D, there exists only a single path from si to ti
via the node vi. And for each line activity in I the lower time bound equals
the upper time bound and the dwell time equals zero at every station. Hence,
both (SPR) and (SPRmax) reduce to determining for both lines the departure
time at the first station. Again, both lines are constructed in such a way that
the transfer times at nodes vi, 1 ≤ i ≤ k−1, are all identical. And the transfer
times at the nodes vk−1 and vk sum up to at least T − ε.

First consider problem (SPRmax). In an optimal solution, the dashed line
departs at s1 at 0 and the solid line departs at v1 at T+ε

2 . The resulting transfer

time for each OD-pair (si, ti) at vi is T−ε
2 . Hence, the total travel time for this

timetable is 2kε+ k T−ε2 = 1
2 (3kε+ kT ).

In an optimal solution to (SPR), the departure time of the dashed line at
s1 is 0 and the solid line departs at v1 at ε. The resulting transfer time for each
OD-pair (si, ti), 1 ≤ i ≤ k− 1, at vi is zero and the transfer time at vk equals
T − ε for the pair (sk, tk). The total travel time for all passenger is therefore
2kε+ T − ε.

We can conclude that

τ total(SPRmax; I)

τ total(SPR; I)
=

3kε+ kT

2(2k ε+ T − ε)
=

3 + k T

4 + 2T − 2
k

−→
k→∞

∞.

This finishes the proof. ut

We finally give a Lemma that shows that there exists no instance such
that the gap of the maximum weighted total travel time and the gap of the



maximum weighted travel time among all passengers can both be arbitrarily
large since they bound each other. Furthermore, the following lemma implies,
that both gaps are bounded by the number of OD-pairs.

Lemma 1 Let k := |D| = |{(s, t) ∈ Vdep × Varr : dst > 0}| be the number of
OD-pairs, then we have for every instance I ∈ {SPR,SPRmax}

τ total(SPRmax; I)

τ total(SPR; I)
≤ k τ

max(SPRmax; I)

τmax(SPR; I)
≤ k

and

τmax(SPR; I)

τmax(SPRmax; I)
≤ k τ total(SPR; I)

τ total(SPRmax; I)
≤ k.

Proof Let (x′, y′) ∈ arg max τ total(SPRmax; I) be an optimal solution of in-
stance I for problem SPRmax yielding the maximum total weighted travel
time and (x′′, y′′) ∈ arg max τmax(SPRmax; I) be an optimal solution yielding
the maximum weighted travel time, i.e., by definition we have

τ total(SPRmax; I) =
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
′
a y
′
p

and for an OD-pair (s′′, t′′) ∈ D

τmax(SPRmax; I) =
∑

p∈Ps′′t′′

∑
a∈p

ds′′t′′ x
′′
a y
′′
p .

Since (x′, y′) and (x′′, y′′) give both rise to an optimal solution of (SPRmax; I),
there exists an OD-pair (s′, t′) ∈ D such that∑

p∈Ps′′t′′

∑
a∈p

ds′′t′′ x
′′
a y
′′
p =

∑
p∈Ps′t′

∑
a∈p

ds′t′ x
′
a y
′
p.

Hence, we get

τ total(SPRmax; I) =
∑

(s,t)∈D

∑
p∈Pst

∑
a∈p

dst x
′
a y
′
p

≤
∑

(s,t)∈D

∑
p∈Ps′t′

∑
a∈p

ds′t′ x
′
a y
′
p

= k
∑

p∈Ps′t′

∑
a∈p

ds′t′ x
′
a y
′
p

= k
∑

p∈Ps′′t′′

∑
a∈p

ds′′t′′ x
′′
a y
′′
p

= k τmax(SPRmax; I).



Similarly, we can argue τ total(SPR; I) ≥ τmax(SPR; I) and conclude

τ total(SPRmax; I)

τ total(SPR; I)
≤ k τmax(SPRmax; I)

τ total(SPR; I)

≤ k τ
max(SPRmax; I)

τmax(SPR; I)
.

ut

5 Computations

The aim of this section is to also give some computational evidence that routing
decisions do indeed have a significant impact on timetabling. To this purpose,
we compare the solution of an integrated timetabling and shortest path rout-
ing model (SPR) with a fixed passenger routing resulting from a real-world
reference timetable.

We consider a scenario from a cooperation with the public transit com-
pany of Wuppertal, the Wuppertaler Stadtwerke (WSW), which is operating
the famous cableway line “Schwebebahn”. The data represents the periodic
timetable of the core network of the public transport system of Wuppertal
for the year 2013. The network has 158 station nodes, 229 OD-nodes, and 460
directed arcs. There are 71 lines: 67 bus lines, three city train lines, and the ca-
bleway line. The lines are operated at different frequencies; their period times
are 10, 15, 20, 30, or 60 minutes. The data also contains the connections to the
regional railway system, such that we can take these important transfers into
account. After some preprocessing, the data contains 45 254 OD-pairs with a
positive demand (we remove all OD-pairs for which the shortest connection
for any timetable does not contain a transfer). Furthermore, we assume that
each transfer has a lower time bound of 2 minutes.

For the computations, we use a time-expanded version of our integer pro-
gramming model (SPR) that integrates a passenger routing. It works roughly
as follows. We introduce for each line a binary variable representing the depar-
ture time at its first station. The passengers are represented by a path-flow in
a time expanded network, in which they can travel freely. In the fixed routing
case the demand of each OD-pair is sent along some shortest path w.r.t. a
given reference timetable, namely, the WSW timetable of 2013 (WSW2013).
The objective is to minimize the total weighted travel time. The core network
of Wuppertal gives rise to a time-expanded event-activity network with 86 386
events and 431 604 activities. There are 3 990 binary line variables modeling
the timetable. The passenger path-flow variables are dynamically added with
a column generation algorithm, solving shortest path pricing problems. Our
code is based on the constraint integer programming framework SCIP version
3.1.0 using Cplex 12.6 as an LP-solver. All computations were done on an
Intel(R) Xeon(R) CPU E3-1245, 3.4 GHz computer (in 64 bit mode) with 8
MB cache, running Linux and 32 GB of memory. We set the time limit to 12
hours.
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Fig. 5 Heat maps comparing differences in travel times between timetables computed with
different passenger routing models. The axes of both diagrams correspond to the OD-nodes.
The color of a point represents the difference in the travel time for the corresponding OD-
pair between the best passenger routing for WSW2013 reference timetable and the result
of an integrated timetable and passenger routing optimization. Left: The redder a dot the
better is the travel time for the timetable computed with the fixed routing. Left: The greener
a dot the better is the travel time for the timetable computed with the shortest path routing.

The WSW2013 reference timetable results in a total weighted travel time
of 2 630 211.97 minutes and a total weighted transfer waiting time of 171 985.41
minutes. Fixing this routing and optimizing a classical PESP model, we could
not find a timetable that improves the total weighted travel time. With the in-
tegrated timetabling and passenger routing model (SPR), however, we found
a timetable that yields a total weighted travel time of 2 597 571.95 minutes
and a total weighted transfer waiting time of only 131 456.07 minutes. This
corresponds to an improvement of 1.24% in travel time and 23.57% in transfer
waiting time. While the first improvement is marginal, the latter is substan-
tial, in particular, since transfer waiting time is known to be perceived beyond
proportion by passengers. The solution still has an optimality gap of 12%.
Figure 5 illustrates the worsening and the improvement of the travel time
for each OD-pair when comparing the passenger routings arising from the
reference timetable and an integrated timetable and passenger routing opti-
mization. The figure shows that for the integrated solution the number of OD
pairs where the travel time decreases is much larger than the number of OD
pairs where the travel time increases compared to the reference solution.

6 Conclusion

In this paper we investigated the influence of different passenger routing vari-
ants on timetable optimization. We showed that the best timetable for a fixed
or lower bound routing can yield total travel times that are arbitrarily larger
than an optimal timetable, i.e., a timetable optimized w.r.t. an integrated pas-
senger routing. If we do not consider capacity constraints then all passengers



can be assumed to use the same shortest path. If line capacities have to be
fulfilled we showed that the total travel times can be reduced if the passengers
of one OD pair are allowed to split their travel routes. Finally, we showed that
the maximum travel time of a timetable minimizing the total travel time is
bounded by the number of OD pairs times the maximum total travel time of
a timetable that minimizes the maximum total travel time. We implemented
a time expanded model similar to the one of Kinder (2008) to compute a
timetable with integrated passenger routing. First computational experience
for data from the city of Wuppertal indicates that the total transfer waiting
time can be substantially reduced by around 24% in comparison to a real-world
reference solution.
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