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Abstract Planners must understand how public transportation systems are
used in order to make strategic decisions. Smart card transaction data provides
vast, detailed records of network usage. Combined with other automatically
collected data sources, established inference methodologies can convert smart
card transactions into complete linked journeys made by individuals in the
public transit network. However, for large, multi-modal networks it can be
challenging to summarize the journey records meaningfully. This paper de-
velops a method for categorizing origin-destination (OD) pairs by the mode
or combination of modes used. By aggregating across OD pairs, this catego-
rization scheme summarizes the multi-modal aspects of network usage. The
methodology can also be applied to subsets of data filtered by time of day or
geography. The categorization results can inform performance analysis of OD
pairs, allowing planners to make comparisons between pairs served by different
combinations of modes. London Oyster card data is analyzed to illustrate how
the OD pair categorization can characterize a network, allowing planners to
quickly assess the roles of different modes, and perform OD pair analysis in a
multi-modal network.

Keywords Multi-modal · Network Structure · Smart Card · User Behavior ·
Performance Evaluation · Journey-Based

1 Introduction

In public transportation, planning takes place at multiple levels. Pelletier et al
(2011) suggest that smart card data can be used at three levels of planning:
strategic, tactical, and operational. This paper focuses on using smart card
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data to aid decision-making at the strategic level, by better understanding
the roles of different modes. Do bus services feed rail or are they used as a
stand-alone service? Do bus routes provide an alternative to rail for certain
trips? This understanding informs the evaluation of the existing network and
the identification of opportunities for improvement and expansion.

Several studies have sought to improve understanding of user behavior
using smart card data, most commonly with an aim to improve marketing.
Utsunomiya et al (2006) combined smart card data with personal informa-
tion provided by users to analyze typical patterns for different user groups
and develop profiles for users of specific stations. Morency et al (2007) ana-
lyzed the regularity of daily patterns and classified users based on their public
transportation usage. Bagchi and White (2005) analyzed smart card churn to
inform targeted campaigns to retain users. These studies can inform decisions
about advertizing, promotions, and fare structure.

In contrast, research on network structure has focused primarily on net-
work topology. Garrison and Marble (1964) used measures derived from graph
theory to assess connectivity of transportation networks. Other studies built on
these measures to characterize network shape (Gordon, 1974), inform network
design (Vuchic and Musso, 1991) and identify properties of network structure
(Derrible and Kennedy, 2010).

Instead of beginning with network topology, this paper introduces a journey-
based approach to explore the multi-modal properties of networks. Extensive
usage of smart cards for payment makes this approach possible. Smart cards
record passengers’ entries and in some cases exits from the public transporta-
tion system. Several researchers have developed methodologies to reconstruct
individuals’ itineraries, inferring origins, destinations, and transfers (Chu and
Chapleau 2008; Gordon et al 2013). In networks where smart card usage is
prevalent, these itineraries can provide a comprehensive picture of public tran-
sit travel.

In large networks such as London, where there are typically upwards of
15 million smart card transactions per day, the data must be aggregated to
provide insight. This paper proposes a methodology that consists of two steps:
the clustering of stops and stations for grouping journeys into zonal OD pairs,
and the categorization of OD pairs based on the mode or combination of
modes used (in the context of this research, bus and rail). The categories can
be applied to all OD pairs, a subset of OD pairs, or a subset of the journeys
for each OD pair, allowing for exploration of temporal and spatial variation.
This methodology provides a concise representation of the modal attributes
of network usage that can inform planners making decisions about network
structure.

The stop and station clustering and OD pair categorization processes can
also serve as a foundation for planners seeking to evaluate performance and
make comparisons across a multi-modal network. While performance indica-
tors are often calculated at the route or line level, performance at the OD
pair level more closely reflects passenger experience and can take into account
multiple paths serving the same OD pair. The stop and station clustering



methodology defines zonal OD pairs that serve as the fundamental unit of
analysis for OD level performance evaluation. Given that modes have different
properties, planners may wish to take mode into account in assessments of of
a multi-modal network. The categorization scheme proposed in this paper can
be used to associate OD pairs with the set of modes used.

The methodology is demonstrated using the London public transportation
network as a case study. Stops and stations are clustered into 1,000 clusters,
and OD pairs are assigned to one of seven modal categories. Time of day and
geographic variation in OD pair categorization is presented, and distance and
speed profiles are estimated for the most populated categories.

2 Methodology

As inputs, the methodology requires data for a set of one-way complete jour-
neys consisting of, at a minimum, initial and final stops or stations and mode
or combination of modes used. The stops and stations are clustered based on
location to assign journeys to zonal OD pairs according to their initial and
final stops or stations. Then OD pairs are categorized based on the share of
journeys by each mode or combination of modes.

2.1 Stop and Station Clustering

Smart card journeys are first grouped by their origins and destinations. The
true origins and destinations for the journeys (such as the individual’s home
or office building) are unknown, but the first and last stop or station for the
journey are taken as proxies. In many cases, individuals can select between
multiple paths. Therefore, instead of treating individual stops and stations
as origins and destinations, clusters of nearby stops and stations are used for
analysis.

One way to group nearby stops and stations is to use existing zonal schemes,
such as postcodes or census tracts. In these schemes, the zones are defined us-
ing roads as boundaries. Consequently, bus stops and rail stations tend to be
at the borders of zones, increasing the likelihood that individuals are choosing
between alternatives in two different zones.

Instead, we cluster stops and stations using the k-means algorithm. This
algorithm assigns data points to clusters such that the sum of distances be-
tween the data points and their cluster’s centroid is minimized (Lloyd, 1982).
In this case, each data point is defined by the geographic coordinates of a bus
stop or rail stations.

The k-means algorithm consist of three steps. First, a set of data points
are selected as the initial centroids. The number of centroids corresponds to
the user-specified number of clusters. Then, each stop or station is assigned
to the closest centroid, measured using the euclidean distance between the
coordinates. Once all points have been assigned, the centroids are recalculated



as the mean values of all points assigned to a given cluster. This process
iterates until the locations of the centroids do not change significantly from
one iteration to the next. The algorithm always converges, but may reach
a local (instead of a global) minimum, specific to the the selection initial
centroids. The k-means++ initialization was used to select these centroids.
This initialization process ensures that the initial centroids are geographically
distributed (not too close together), which has better results than completely
random selection (Arthur and Vassilvitskii, 2007).

Given that all stops and stations in a network may not fit clearly into clus-
ters, the resulting cluster membership is likely to vary depending on initial
centroids. Instead, the algorithm results in one plausible grouping of nearby
stops and stations. This grouping is useful compared to existing zonal struc-
tures, because instances of zonal boundaries that split closely adjacent stops
and stations are reduced.

In the k-means algorithm, the number of clusters is a user-specified input
to the k-means algorithm. One way to select the number of clusters is to use
a score such as the silhouette score, which is a measure that evaluates clus-
ter tightness (the closeness of points within a cluster) and cluster separation
(distance between clusters) (Rousseeuw, 1987). However, if the data does not
have a strong underlying structure of clusters, there may be little variation in
this score. Given that the clusters in this case will be identified as starting and
ending zones for journeys in the network, it is helpful to consider elements of
the downstream analysis. If there are too many clusters, there will not be a
significant number of journeys in each zonal OD pair and neighboring clusters
may be so close that individuals consider stops and stations in multiple clus-
ters. At the same time, the stops within each cluster should be in comfortable
walking distance of one another in order to constitute valid alternatives. Too
few clusters can result in walking distances that are unrealistic. The number of
clusters can be adjusted to reflect different assumptions about access distance.

2.2 Categorization of Origin-Destination Pairs

The result of the stop and station clustering is a set of zones with each stop and
station belonging to a single zone. Given data on complete one-way journeys
taking place in the network, these journeys can be assigned to zonal OD pairs
according to the zones of their initial and final stop or station. These complete
journeys are also classified by mode, defined as either bus (all stages were by
bus), rail (all stages were by rail) or combined (journeys including both bus
and rail stages).

Next, OD pairs are categorized based on the share of journeys belonging
to the three modal categories (bus, rail, and combined). Each OD pair is
categorized as one of the following:

– primarily bus
– primarily rail
– primarily combined



– bus and rail
– bus and combined
– rail and combined
– bus, rail and combined

To assign pairs to categories, we define a dominance threshold and an ex-
istence threshold. The dominance threshold is the percentage of journeys by a
given mode required to place the OD pair into the single-mode categories (pri-
marily rail, primarily bus, and primarily combined). If the dominance thresh-
old is 80%, OD pairs with 80% (or more) journeys by rail will fall into the
primarily rail category, and likewise for primarily bus and primarily combined.

The existence threshold is the minimum percentage of journeys by a certain
mode to include the mode in the category assignment. If the existence thresh-
old is 10%, an OD pair with 5% rail, 65% bus and 30% combined would fall
into the bus and combined category and not the bus, rail, and combined cate-
gory. Figure 1 shows the seven categories with the modal percentages plotted
to the left of the schematic showing paths between zones.

Planners may opt to use different thresholds. A very high dominance
threshold will identify the OD pairs where users appear to be truly captive to
a given mode. Conversely, if planners wish to identify OD pairs with similar
modal splits the existence threshold can be raised and the dominance threshold
lowered.

3 London Case Study

London provides an interesting example for this analysis because it has a multi-
modal public transportation network and a high rate of population growth
necessitating growth in the bus system. As planners make decisions how to
accommodate increased demand for bus service, they must first understand
the role of bus in the current network. Figure 2 shows a map of London’s
multi-modal network.

3.1 Oyster Data Set

The smart card data used for the case study consists of 14 days of Oyster (Lon-
don’s smart card) transactions. The data was processed using the methodology
developed by Gordon et al (2013) which infers origin bus stops, alighting bus
stops, and links stages of multi-stage journeys using automatic vehicle location
data and geographic and time-based thresholds. For simplification, only jour-
neys of up to three stages were included (with stages here defined as initiating
with a smart card tap), which represent 99.4% of all journeys.

Figure 3 displays the distribution of journeys by mode in London for the
data analyzed. Underground, Overground, and National Rail are grouped as
rail for this analysis. In the Underground, passengers can transfer between
lines without tapping their card during the transfer. Therefore, we do not



Fig. 1 Seven modal categories
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Fig. 3 Journeys by mode and number of stages

always know the exact path an individual takes through the rail network. If
an individual’s starting and ending station are served by the same line (i.e. the
Victoria line), it is assumed to be a single rail stage. Otherwise the number
of stages is designated as two or more. Passengers must tap their Oyster card
at the beginning of each bus stage so these bus journeys can be accurately
defined as one, two, or three stages.



The ODX methodology inferred the starting and ending stop or station
for 81% of journeys made using an Oyster card in the two weeks analyzed. Of
the Oyster journeys that did not have a starting and ending stop or station
inferred, 69% were identified as single stage bus journeys with an origin stop
and bus route but no destination stop inferred. This is because for bus stages,
the ODX methodology infers the alighting stop based on the next stage of the
journey or the same day return journey, meaning that destination stops for
bus stages without a continuation or return journey cannot be inferred.

Because the proposed analysis is OD-based, journeys without destination
stops cannot be included, meaning that the disproportionate inference rate
for single stage bus journeys would result in under-representation of bus jour-
neys. To correct for this under-counting, each of the single stage bus journeys
with an uninferred destination stop was assigned an alighting stop by the
following methodology: For each boarding stop, a destination stop distribu-
tion was constructed, consisting of the frequency of occurrence of all inferred
downstream destination stops for single stage bus journeys originating at that
stop. Then, for each journey beginning at that boarding stop which did not
have an inferred destination, a destination stop was selected at random from
this distribution. This methodology assumes that single stage journeys with
uninferred destinations have the same destination distribution as single stage
journeys with inferred destinations.

Through the inference methodologies, the Oyster data was transformed
into a set of 90,306,224 complete journeys. Assuming an 80% Oyster card
penetration rate (Transport for London, 2012) this accounts for approximately
75% of all journeys in the period.

3.2 Clustering Results

The k-means algorithm was applied to the the stops and stations in Greater
London, with 1,000 clusters specified. The silhouette score revealed little dif-
ference between various numbers of clusters that would be consistent with a
reasonable walking distance (800 to 1400 clusters). 1,000 clusters results in
zones that average 1.6 km2, but because stops and stations are more heavily
concentrated in Central London, zones are smaller at the center and larger at
the periphery. The number of stops and stations per zone varies as well, as
shown in Figure 4. Figure 5 displays the zones generated for a portion of Cen-
tral London. Due to their higher ridership, rail stations were weighted tenfold
to increase the likelihood of their being close to the center of a cluster. When
journeys are assigned to clusters, as expected, the zonal OD matrix is sparse;
48% of the OD pairs are empty.

3.3 Origin-Destination Pair Categorization Results

OD pairs were assigned to the seven categories outlined in Section 2.2, with an
existence threshold of 10% and a dominance threshold of 80%. Only OD pairs
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with at least 385 journeys were included to avoid small sample size problems.
Figure 6 shows the results. In 46% of OD pairs, bus is the primary mode.
This may reflect the fact that many parts of the outer London network are
served only by bus. Alternatively, users may have a strong preference for bus
for certain journeys, for example short journeys.

Applying the methodology to subsets of the data can provide more detailed
insight. Figure 7 shows the results of the methodology applied to weekday AM
Peak journeys. This analysis can help planners understand how network usage
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Fig. 6 Categorization of all OD pairs

changes over the course of the day. In London, the percentage of primarily rail
OD pairs is greater in the AM peak than overall.

One can also consider geographic variation. To illustrate this, a central
zone was defined and the following set of journey types were analyzed: OD
pairs within the central zone (central), OD pairs that start outside the central
zone and end inside it (to center), OD pairs that start inside the central zone
and end outside it (from center), and OD pairs that start and end outside the
central zone (periphery). Figure 8 shows how the categorization results differ
between these journey types in the AM peak.

Central OD pairs include a high percentage of bus and rail designated pairs,
indicating that both modes are important, in many cases providing parallel
service. There is considerable asymmetry in journeys to and from the central
zone. The primarily rail category dominates the “to center” OD pairs suggest-
ing that rail is critical for these journeys. However, for the “from center” OD
pairs, primarily bus dominates. This is likely due to the fact that destinations
outside Central London are less likely to be close to rail stations. Even in the
AM peak period, bus service is important for these reverse commuting trips.
Not surprisingly, the bus network serves the peripheral trips almost exclusively.

3.4 Origin-Destination Pair Characteristics and Performance by Category

Planners can also use the categorization results to assess attributes of OD
pairs falling into each category. These can be descriptive characteristics, such
as the distance distribution or evaluation metrics, such as travel speed.
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Fig. 7 Categorization of OD pairs for weekday AM peak

Figure 9 shows the distance distributions for OD pairs that are primarily
bus, primarily rail, and bus and rail for the AM peak. Other categories were
excluded from the figure because they make up a small percentage of AM peak
OD pairs. Distance is defined as the straight line distance from the centroid
of the origin zone to the centroid of the destination zone. This shows that in
London rail tends to serve longer journeys from 2 to 8 miles while bus serves
shorter journeys that range from 0 to 3 miles. The bus and rail OD pairs,
in which some journeys are made by bus and others by rail, have a distance
distribution falling between that of primarily rail and primarily bus, though
it more closely mirrors the primarily bus distribution.

Figure 10 plots journey distance against journey time for a random sample
of OD pairs, demonstrating the variation in speed across OD pairs. Again, only
primarily bus, primarily rail, and bus and rail are shown because they are the
dominant categories in the AM peak. Primarily bus OD pairs tend to have the
slowest speeds but also have less variation in speed compared to primarily rail
OD pairs. For OD pair level evaluation, planners can set different standards
depending on the category that a particular OD pair is part of.

4 Conclusions

This paper presents a methodology for aggregating large quantities of smart
card data in a meaningful way to help understand the ways in which pas-
sengers use different modes in a multi-modal public transportation network.
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Fig. 8 Geographic variation in categorization results
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Rather than making this characterization based on the network topology, this
methodology starts from the passengers’ journeys, and presents a clear picture
of how the network is used, rather than of the services provided. This under-
standing of user behavior can inform planners as they make strategic decisions
about network structure and modal expansion.

The analysis presented for the London network suggests that bus provides
an important role for journeys around the periphery, journeys from the central
zone to the periphery, and journeys within the central zone. With this infor-
mation, planners can decide if they want to focus on improving the services
that already fill these roles or concentrate on expanding the role of bus in
journeys from the periphery to the center.

The categorization methodology provides a foundation for further eval-
uation of multi-modal public transportation networks. Performance metrics
assessed at the OD pair level can be useful, particularly in a dense network
where passengers may take different paths between an OD pair. Planners can
opt to use category-specific standards for metrics to account for performance
differences intrinsic to different modes.
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