
CASPT 2015

Simultaneously Recovering Rolling Stock Schedules and
Depot Plans Under Disruption

Jørgen Thorlund Haahr · Richard Martin

Lusby · Jesper Larsen · David Pisinger

Keywords Depot Planning · Disruption Management · Integration

Abstract In this paper we consider two important railway optimization problems.
In particular, we focus on the Rolling Stock Rescheduling problem and the Depot
Replanning problem, respectively. We present an integrated framework for solving
these two problems simultaneously, and show that it is fast enough to be applied
in a disruption recovery setting. Furthermore, we provide a comparison of several
solution strategies to the Train Unit Parking Problem, and, by way of an example
prove the heuristic nature of a previously proposed optimal approach. We analyse
the performance of the proposed methodology on a number of artificial data sets
as well as several real-life case studies provided by DSB Stog, a suburban train
operator in the greater Copenhagen area.

1 Introduction

Disruptions are an undesirable yet inevitable part of the day-to-day planning for
a railway company. Often they will render the planned, optimized schedules in-
feasible and, if handled poorly, can propagate through the network with a host
of unwelcome consequences, both for the train operating company itself and its
passengers alike. Therefore, ensuring that the impact of the disruption is as small
as possible is of utmost importance when recovering, or restoring, the feasibility
of the schedules. Generally, when disruptions occur, the solution to a number of
highly interdependent problems is required quickly, e.g. crew and rolling stock
changes must be coordinated with any timetable changes, and the planned depot
schedules must also be revised. Due to the size and complexity of each of these
problems, not to mention the short reaction time available to find a solution, it is
not surprising that recently there has been an increased interest in computer aided
decision support, or disruption management, tools that assist planners in recovery
operations within the railway industry, see e.g. Kroon and Huisman (2011).

E-mail: {jhaa}{rmlu}{jesla}{dapi}@dtu.dk
Department of Engineering Management, Technical University of Denmark, Produktionstorvet,
Building 426, 2800 Kgs. Lyngby, Denmark

In this work we consider two important rescheduling problems. In particular,
we focus on the Rolling Stock Rescheduling Problem (RSRP) and the Depot Re-
planning Problem (DRP), respectively. We present an optimization-based frame-
work, which extends the work of Haahr et al (2014), for simultaneously solving
both of these in a disrupted environment. Rolling stock rescheduling necessitates
reallocating train units to the timetabled trips in such a way that the overall cost
of executing the revised schedule is minimized, while at the same time ensuring a
sufficient number of seats are provided for the passengers. Additional constraints
limiting the movement of available units, i.e. target inventory levels for each of
the unit types at each of the depots, must also be respected. Depot planning,
also known as the Train Unit Shunting Problem (TUSP) (see Freling et al (2005))
on the other hand, primarily focuses on the train units not in service. In order
to cover the expected passenger demand as closely as possible, the composition
of trains can be changed over the course of the planning horizon by coupling or
decoupling units. Furthermore, units must routinely be taken out of service for
maintenance and cleaning purposes. Depots usually consist of a number of paral-
lel storage tracks where unavailable/unused units can be parked. On which track
and in which order to park such units is the solution to the DRP. Often depot
tracks can only be accessed from one end, implying that they function as Last-in-

First-out (LIFO) stacks. However, even in the case of free tracks, i.e. tracks that
can be accessed from both ends, ordering restrictions will stil apply. In addition
each depot track has a certain capacity, limiting the number of units that can be
assigned the track at any one time.

To the best of our knowledge, an approach integrating these two problems has
not been previously proposed. The strategic and tactical level planning variants of
each problem have been studied independently in the literature (see e.g Fioole et al
(2006), Kroon et al (2008), and Freling et al (2005)), while models and methods
are also available for the rolling stock rescheduling problem (see e.g Haahr et al
(2014), Nielsen (2011)). However, research that explicitly addresses depot replan-
ning, not to mention its integration with rolling stock rescheduling in a disrupted
environment seems to be noticeably absent. Planning the rolling stock and depot
movements sequentially in separate phases often leads to infeasible or sub-optimal
solutions, while neglecting the depot planning aspect when rescheduling rolling
stock units can result in infeasibilities with respect to some depots. A depot in-
feasibility would most likely be due to an ordering violation on one of the depot’s
tracks; i.e. two units cannot enter and exit the depot in the order prescribed by
the rolling stock plan. Often such infeasibilities manifest themselves in networks
with scarce depot capacity.

The method proposed in this paper extends the Branch-and-Price (BAP)
framework of Haahr et al (2014), which reschedules disrupted rolling stock units,
to also include the identification of parking plans for each of the depots in the
network. In Haahr et al (2014) depot capacity is only implicitly considered in the
form of an aggregated constraint on the total length of track available. It does not

consider any ordering conflicts that could arise, nor if it is possible to park any
unused units when individual track capacities are considered. It is a unit based
decomposition which generates trajectories for each of the units in the fleet and
in doing so identifies compositions for each of the trains that will be run. The
underlying model ensures when coupling or decoupling units at a given depot, the
resulting composition change is possible. From the specific individual unit trajec-

tories it is also possible to determine at which times a given unit enters, or exits,
a given depot. Utilizing this information, we extend the BAP method of Haahr
et al (2014) to a Branch-and-Price-and-Cut (BAPC) approach, where on finding a
feasible solution to the routing problem, we test the feasibility of all depots in the
network. If feasible, the solution is accepted, otherwise it is cut away and a new
routing solution is generated. As such this paper makes the following important
contributions to literature on railway rolling stock rescheduling:

– An integrated framework for recovering rolling stock and depot plans
– A comparison of methods for solving the Train Unit Parking Problem (TUP).
– A counter example highlighting the heuristic nature of a previously proposed

optimal method in Freling et al (2005) for generating the optimal Linear Pro-
gramming (LP) solution to the so-called TUP

– A heuristic swapping routine that can be used to repair a depot plan as an
alternative to cutting the infeasible solution away

– An approach that removes one phase of planning usually required in the TUSP

This research is carried out in collaboration with DSB S-tog, the suburban rail
operator in the greater Copenhagen area. All depots on this network are LIFO
stacks and depot space is at a premium. Finding a feasible rolling stock schedule
is only part of them problem since there may not exist any feasible parking plan
to facilitate the required shunting movements. We test the performance of the
algorithm on several real-life case studies provided by S-tog.

This paper is structured as follows. In Section 2 we introduce a more formal
description of each of the two problems. Section 3 then provides a brief summary of
the relevant literature, where any differences to existing approaches are elaborated
on. We introduce mathematical models for the respective problems in Section 4.
Section 5 discusses solution methods for the developed, individual models and
describes in detail the complete, integrated framework. It is in this section that we
also provide a counter example to the proposed optimal approach of Freling et al
(2005) for the TUSP. In Section 6 the performance of the proposed methodology is
analysed on a set of realistic test instances. Finally, conclusions and future research
directions are outlined in Section 7.

2 Problem Description

Since this problem deals with the integration of two rescheduling problems, we
separate this section into two subsections and provide a detailed description of
each in turn. Section 2.1 introduces the RSRP, while Section 2.2 is devoted to a
discussion on the DRP.

2.1 Rolling Stock Scheduling

Given a revised timetable, as a result of a disruption, the rolling stock rescheduling
problem entails reallocating a fleet of units, possibly of different types, to the
revised set of timetabled trips in such a way that some objective is optimized.
The trips each unit can be assigned to depend on the unit’s current location
and possibly its unit type. A unit’s type specifies the characteristics of the unit,

i.e. it’s length, operating cost, and capacity. Typically, one tries to reallocate the
fleet in such a way that sufficient seat capacity is provided for the passengers;
however, minimizing the number of additional cancellations and/or operating costs
might also be a preferred objective. Unlike, rolling stock planning, many of the
constraints are soft since it is not certain that they can be fulfilled when facing a
disruption. The constraints can be violated, but doing so incurs a penalty. Common
soft constraints include: covering trips, covering the required seat demand, and
adhering to the end-of-day balance. The end-of-day balance guarantees that a
certain number of units of each type are available in each of the depots at the end
of the day. This ensures that the rolling stock operations the following day can
start as planned. Hard constraints include the current location of the unit types,
the maximum length of train compositions on trips, and upper bounds on the
available depot capacities. The upper bound on a depot’s capacity simply gives
the total track length available there. Depots typically consist of multiple parallel
tracks (of different lengths), and such information is lost when giving this total
capacity. That is, the aggregated lengths ensure no depot capacity will ever be
violated; however, this does not rule out the possibility for ordering violations on
the depot tracks when considering all tracks as well as the exact timings of unit
movements into and out of the depot.

2.2 Depot Replanning

As mentioned earlier, the TUSP focuses on a specific depot and tries to allocate
unit movements in such a way that each unit movement into and out of the depot
can be performed in a conflict free manner and that no depot track capacity is
ever violated. Traditionally, this requires solving two smaller subproblems known
as the Unit Matching Problem and the TUP. The first is an optimization problem
which matches arrival events with departure events and assigns each a physical
unit. This is required as the rolling stock allocation is typically anonymous. In
other words, only the type of unit required on a certain trip is known, not which
actual unit will perform the trip Once matched, exact movement times for each
physical unit are known and, based on these, the parking problem attempts to
park them on the depot tracks in such a way that no movements are in conflict.
Depending on arrival and departure times, if parked on the same track, one unit
can prevent another from exiting the depot.

Due to the unit based routing perspective of the rolling stock model we solve,
we only concern ourselves with the TUP. This is because all arrival and departure
times at each of the depots for each of the units are implicitly contained in the
variables of the rolling stock model. Such variables provide information on the
composition of each train assigned to each trip. Hence, the order the units will
enter and leave a given depot is known, if being decoupled or coupled. What
remains is to see if they can be parked in a conflict-free manner. The DRP can
hence be stated as follows. Given a set of rescheduled rolling stock routes, can the
resulting events be parked in feasibly in the depot. Here an event refers to a physical
unit with known arrival and departure times, a given length, and a prescribed unit
type. We argue that in recovery mode, it is sufficient to detect feasibility of the
depots as the majority of the cost is incurred in the routing phase. Note, if feasible,
depots can always be resolved independently to achieve a better parking. One key

difference between the planning and rescheduling phases when determining how
to park the units is that in the latter an initial fleet position (on the depot tracks)
must be adhered to.

Feasibility is unlikely to be a problem if the number of depot tracks is suf-
ficiently large; however, for DSB S-tog, depot capacity is a scarce commodity,
meaning this must be considered when routing rolling stock units. If infeasible,
feasibility can be restored if it is possible to swap the routes of two events in con-
flict. Swapping can only be done if the units are considered interchangeable. Units
are considered interchangeable if they are of the same unit type and have feasible
maintenance levels. Maintenance checks on units at DSB-Stog are issued at certain
times and routes are allocated to units whilst adhering to this. Thus, swapping
units is not considered a general remedy to correct for feasibility. Note that in
this work, we do not route units from platforms to depot tracks on a detailed
infrastructure level. Though we assume this is done in a post-processing phase,
the number of simultaneous events can be limited in the rolling stock model.

3 Literature

In this section we review relevant literature in the field of RSRP and the TUSP.
For the former we also include in the survey models and methods used for solving
the tactical level problem of rolling stock planning. For the latter, however, to
our knowledge no studies dedicated to real-time disruption management of depots
exist. The ordering restrictions inherent in the TUSP are not unique to passenger
rail, nor trains for that matter. We draw analogies with bus depot planning and
freight rail car classification.

Over the past few years several different models have been put forward for
solving rolling stock problems, both from the planning and the rescheduling per-
spective. An approach for determining the minimum circulation of train units
required to operate a timetable is described in Schrijver (1993). A more elabo-
rate Mixed Integer Programming (MIP) model that can handle the combining
and splitting trains is proposed in Fioole et al (2006). This model forms the basis
of Nielsen et al (2012), where a rolling horizon framework is developed for solving
the RSRP. These three approaches can all be classified as anonymous unit flow
models. As such, one is unable to track individual unit movements. As an alterna-
tive, Haahr et al (2014) presents a path based formulation for the RSRP and solve
this using BAP. Each path specifies a route for a particular unit type through the
network. Train compositions are handled by the master problem, making sure that
any composition changes are legal. Note that the model does not assign physical
unit routes but sets of routes that are consistent with the unit types available.
This methodology does therefore not deal with anonymous units and is equally
applicable at the tactical planning level.

Not surprisingly, a number of studies concerning variants of the TUSP have
also been conducted. The problem of dispatching trams from a storage yard is ad-
dressed by Winter and Zimmermann (2000). In order to achieve a departure order
satisfying the scheduled demand, several shunting operations may be necessary.
The authors describe combinatorial optimization models as well as both exact and
heuristic approaches for solving the real time dispatch problem. Scheduling trams
in the morning is also the topic of Blasum et al (1999). The authors prove the NP

completeness of the problem of finding as assignment of parked trams (of different
types in stacks) to departure times without any additional shunting movements.
A graph theoretical approach to shunting train units in a railway depot is adopted
by Stefano and Koči (2004). The complexity of several subproblems is studied and
the objective of all problems is to minimize the number of tracks needed to park
the units. Three heuristic approaches to train shunting in a workshop area are
described by Jacobsen and Pisinger (2011), while Føns (2006) considers different
mathematical models and approaches for the TUSP. Both latter studies consider
cases arising at the Copenhagen suburban railway operator, DSB S-tog.

The problem of dispatching buses from a bus terminal is the focus Gallo and
Miele (2001). Initially the problem is formulated using the Quadratic Assignment
model approach of Winter and Zimmermann (2000). In addition, the authors also
describe a new model that takes into account the fact that the buses can have
different lengths. The resulting model is shown to be well suited to decomposition,
and hence the authors present a lagrangian decomposition based approach. Real-
life instances from the Florence Public Transportation Company are studied. It is
concluded that the algorithm can find good quality solutions at low computational
cost. Other bus parking related research includes Hamdouni et al (2006) and Ham-
douni et al (2007). The former considers identifying robust parking solutions and
argues that one should generate solutions in which the bus lanes have at most two
different types. Having fewer types on a lane reduces the potential for ordering
(or crossing conflicts), possibly at the expense of wasting parking capacity. The
latter introduces a benders decomposition approach for minimizing bus type mis-
matches between arrival and departure pairs. That is, in the problem considered
it is possible to supply a bus of a different type to that which is demanded, but at
a cost. Having as few bus types on a given parking lane is also a priority.

In Freling et al (2005), the TUSP is separated into a matching problem and a
TUP, where the matching is solved first and then used as input to the TUP. The
authors propose a MIP model for the matching problem, while the parking problem
is solved using a column generation approach. Computational experiments focus on
case studies in The Netherlands. It is not completely clear if a column generation
approach is necessary for the instances considered. Furthermore, we argue, by way
of a counter example that the dominance criteria stated is not exact, i.e. it can
potentially remove the optimal solution.

A similar decomposition is also suggested by Lentink et al (2006). However,
two additional steps focusing on the routing of the train units from their arrival
platforms to their designated depot tracks are also included. Between the matching
of arrivals with departures and the parking of the units, an estimate on the cost
of routing the trains is calculated. These costs are then used when solving the
parking problem. Upon parking the units, actual routes from the platform to the
depot tracks are obtained. A heuristic that sequentially routes the units is devised,
and the complete routing solution is improved using a 2-opt heuristic.

In Haijema et al (2006) the authors propose a dynamic programming based
heuristic for solving the TUSP. A realistic test case from the railway station Zwolle
in The Netherlands is used to test the developed methodology. The test case
considers a 24 hour period during which 45 units arrive and 55 units depart. The
depot has 19 tracks with a total length of 4000m. The simple heuristic is fast
and flexible and produces promising results; however, only a single instance from
real-life is considered.

The work of Kroon et al (2008) extends the work of Freling et al (2005) and
presents a fully integrated model for solving both the matching problem as well as
the parking problem. A large MIP model is proposed that attempts to minimize the
number of split compositions and the number of different unit types simultaneously
parked on the same depot track. The authors indicate how the model can be
strengthened through the addition of clique inequalities and also how to model
more practical restrictions. For example, a discussion on how to deal with trains
composed of several train units as well as how to model depot tracks that can be
approached from both sides is included. The concept of a virtual shunting track
is introduced in order to help identify which tracks should be heterogeneous and
which tracks should be homogeneous from a unit type perspective. Computational
experiments focus on two Dutch stations and consider up to 125 train units of 12
different types that need to be parked.

An advanced planning tool for shunting operations is described in van Wezel
and Riezebos (2011). Like almost all previous work on the TUSP, this approach
first solves a matching problem that determines how arriving units are matched
to departing units. This is done via a network flow algorithm. A k-shortest path
algorithm is used to assign a track to each unit, while a modified version an
undirected k-shortest path is used to route the units. Finally the approach also
assigns drivers to shunt operations.

Aside from passenger railway operators, ordering problems on storage tracks
are also highly prevalent in the freight rail industry. In order to reach their final
destination freight rail cars are sorted at so-called classification yards where incom-
ing trains are sorted into blocks of rail cars that share the same destination. The
blocks are subsequently combined to form outbound trains. The order in which to
process inbound trains, which blocks to build, which track to assign a block, and
how to build outbound trains, are all decisions that need to be made. For a survey
of shunting in the freight rail industry, the reader is referred to e.g. Gatto et al
(2009), and Boysen et al (2012).

To summarize, when solving the TUSP one first typically solves a matching
problem before solving a TUP (and possibly a routing) problem. This stems from
the fact that rolling stock allocation is typically done via MIP models which gen-
erate anonymous unit routes. In what follows, we show the proposed methodology
circumvents the need for the matching phase due to the specific unit route gener-
ation in the approach of Haahr et al (2014).

4 Models

This section focuses on modelling the TUP. We omit a discussion on how we
model and solve the rolling stock rescheduling problem since we assume this to be
available to us; we adopt the BAP approach of Haahr et al (2014).

There are various ways to model and solve the TUP, and in this section we
introduce two such mathematical formulations. In particular, Section 4.1 describes
a standard MIP formulation, which we solve with the commerical solver Gurobi.
Additionally, Section 4.2 discusses a formulation to which column generation can
be applied. For the latter we develop a full BAP framework. We term these two ap-
proaches the compact formulation and the column generation approach, respectively.
Furthermore, we test the performance of these approaches in Section 6.

We begin by introducing notation consistent to both of the proposed models.
When solving TUP for a given depot we assume that we have a set of events, E.
Such a set can be constructed from a feasible routing solution to the RSRP by
observing when units are coupled and decoupled at the relevant depot. Associated
with each event e ∈ E is information concerning the arrival earr and departure
darr time of the unit, the length of the unit le, the unit’s type, and any initial
position information if the unit was initially parked in the depot. Typically, the
initial position states not only the track, but the index of the unit in the stack of
units initially parked on the track.

4.1 Compact Formulation

This first formulation is similar in structure to the MIP formulations given in Lentink
et al (2006), and Kroon et al (2008) for the TUP. This approach focuses on the
events and attempts to determine the best assignment of events to tracks. Note
that we define the problem to have an objective function here, despite the fact
we solve it as a feasibility problem. For the description of the model we prefer to
give a general interpretation. In this approach binary variables xet are introduced
and indicate whether or not event e ∈ E is assigned track t ∈ T . Since it may be
impossible to park all events, a second set of binary variables ye is used to indicate
whether or not e ∈ E is left uncovered in the final solution. Track length restric-
tions must be observed whenever a unit arrives at the depot. For this purpose
we introduce the set A := {(a, t) ∈ E × T |a is an arrival event} and Ea. The first
contains pairs of events and tracks while the second gives the set of events present
in the depot upon arrival of event a ∈ E. Associated with each decision variable is
a cost. We denote the cost of assigning event e ∈ E to depot track t ∈ T as cet. A
penalty cost of M is assigned to the ye variables, reflecting the unattractiveness
of uncovering an event. Any pair of events which cannot be parked on the same
depot track for LIFO ordering reasons are said to be in conflict, and all such pairs
are contained in the set C. The full formulation can now be given.

Minimize:
∑
e∈E

∑
t∈T

cetxet +M
∑
e∈E

ye (1)

∑
t∈T

xet + ye = 1 ∀e ∈ E , (2)

∑
e∈Ea

lexet ≤ Lt ∀(a, t) ∈ A, (3)

xet + xe′t ≤ 1 ∀(e, e′) ∈ C, t ∈ T , (4)

xet ∈ {0, 1} ∀e ∈ E , t ∈ T , (5)

ye ∈ {0, 1} ∀e ∈ E , (6)

A brief description of the compact model is given as follows. The objective
function (1) seeks a minimum cost assignment of events to depot tracks. Con-
straints (2) enforce the requirement that each event is assigned to exactly one
of the depot tracks or is left uncovered Constraint set (3) ensures that the track

capacity is never violated when an arrival event occurs, while constraints (4) stip-
ulate the LIFO restrictions; there is a pairwise packing constraint included for any
two events in conflict. Finally, variable domains are given by (5) and (6). Note
that constraints (4) can be strengthened by identifying stronger clique inequali-
ties. Typically this set of constraints can be problematic as the formulation could
become prohibitively large if there are many conflicts.

4.2 Column Generation Model

The second formulation we introduce is similar to that of the compact formulation
above; however, constraints (3) and (4) are enforced in the construction of the vari-
ables and are thus not explicitly needed in the formulation. It has been proposed
by, among others, Freling et al (2005) and Føns (2006). In this approach one looks
at identifying parking plans for each of the tracks, and is the formulation obtained
by applying Dantzig-Wolfe Decomposition to the MIP formulation above, where
constraints (3) and (5) are placed in the subproblem and implicitly satisfied in the
construction of the variables. A parking plan for a given track t ∈ T simply refers
to a set of events that can all use track t in a conflict-free manner without violating
the track capacity. As such, we denote the set of all parking plans for t ∈ T as
Pt and introduce a new set of binary variables xtp that govern the selection of a
particular track plan p ∈ Pt for depot track t ∈ T . A cost ctp is associated with
each such variable and indicates the unattractiveness of the assignment; this cost
is merely the sum of the costs of each of the events contained in the parking plan.
Again, we define ye variables, one for each event, to include the possibility of not
covering an event. Like, the compact formulation, each is assigned a large penalty
cost M . Finally, the binary parameter aep is used to indicate whether event e ∈ E
is included in track plan p ∈ Pt or not. The full formulation is given below.

Minimize:
∑
t∈T

∑
p∈Pt

ctpxtp +M
∑
e∈E

ye (7)

∑
p∈Pt

xtp = 1 ∀t ∈ T , (8)

∑
t∈T

∑
p∈Pt

aepxtp + ye = 1 ∀e ∈ E , (9)

xtp ∈ {0, 1} ∀t ∈ T , p ∈ Pt, (10)

ye ∈ {0, 1} ∀e ∈ E . (11)

An interpretation of this model is as follows. The objective function, given
by (7), is identical in structure to that of (1); however, the aim here is to find
a minimum cost selection of track plans. Constraints (8) ensure that each depot
track is assigned exactly one of its possible track plans (including the null assign-
ment, i.e. a parking plan containing no events), while constraints (9) enforce the
restriction that each event must be present in exactly one of the track plans, or left
uncovered. Variable domains are stated by (10) and (11). While this formulation
has a constant row dimension (independent of the number of conflicting events),
it can have an exponential number of variables; for large problems there could

be many possible parking plans. Hence, a column generation approach is typically
the preferred solution method, generating only variables that have the potential to
improve the objective function. This approach was first described in Freling et al
(2005), where it is coupled with a heuristic Branch-and-Bound (BAB) strategy. In
Section 5 we outline a full BAP procedure, and correct an error in the proposed
column generation procedure.

5 Solution Approach

Solution methods for both of the formulations given in Section 4 are described in
this section. For Model (1)-(5) one can observe that it can be potentially cumber-
some to a priori generate all pairs of conflicts, constraints (3), a priori. Therefore,
as well as solving the model directly with the commercial solver Gurobi, we also
test an approach that solves a relaxed version of the model in which all such LIFO
restrictions are initially removed and gradually reintroduced via a Branch-and-Cut
(BAC) procedure if any are found to be violated. The second model, on the other
hand, is characterized by exponentially many variables (parking plans) that must
be considered. For this model, we describe the column generation model proposed
in Freling et al (2005) and show how, through constraint branching, this can be
extended to a full BAP framework. More details regarding each of the approaches
is described in the following sections.

5.1 Branch-and-Cut

BAC is a well known technique for efficiently solving large scale mixed MIPs, see
e.g. Desrosiers and Lübbecke (2010). This approach combines the addition of cut-
ting planes within a BAB framework. More specifically, whenever the relaxation
of node in the branch-and-bound tree is solved to optimality, so-called separation

routines are performed. Each separation routine attempts to identify valid inequal-
ities, i.e. constraints that are not part of the original formulation, but which are
violated by the node’s fractional solution. By adding such valid inequalities one
hopes to improve the node’s objective bound by removing infeasible fractional
solutions that would otherwise be branched on. The valid inequalities produce a
tighter relaxation and often a less fractional solution.

In addition to generating valid inequalities from the problem’s full constraint
set it is also possible to remove a set of problem constraints, thus obtaining a
relaxation, and run a separation routine that identifies any violated, relaxed con-
straints. This can be particularly useful if there is a large set of constraints, many
of which are unlikely to be binding in an optimal solution. See, for example, the
application of BAC algorithms to the travelling salesman problem and its variants,
see e.g. Padberg et al (1987), where the exponential number of sub tour elimination
constraints can be more efficiently handled via a separation routine.

In addition to a direct solve of Model (1)-(6), we also compare an alternative
BAC algorithm for the TUP. As stated above, we relax the problem by first re-
moving the LIFO related constraints (4), and whenever a violation is found, the
necessary constraints are added. Note that if a LIFO violation is found for two
events, we add a LIFO constraint for each track in the depot to ensure that the

conflict doesn’t simply move to one of the other tracks. In this approach we cut
on both fractional and integer solutions.

5.2 Column Generation

Column generation is an efficient method for solving large scale linear programs
and (see e.g. Desrosiers et al (2005)), via a BAP algorithm (see e.g. Barnhart et al
(1998)), can be adapted to solve large scale mixed integer programs. It is typically
used in situations where it is computationally intractable to enumerate all possible
variables a priori. With column generation, the problem is decomposed into a
master problem and one or more independent subproblems. The role of the master
problem is to solve a reduced set of the possible variables to (linear programming)
optimality, while the role of each subproblem is to generate promising variables for
the master problem using the dual variables from the optimized master solution,
much like the pricing step in the simplex algorithm. Column generation is an
iterative procedure between the master problem and subproblems and continues
until no variables with negative reduced cost are found by any of the subproblems.

As shown in Freling et al (2005), the TUP lends itself very naturally to a
column generation framework; the relaxed, restricted master problem is obtained
by relaxing the integrality restrictions on the x variables and restricting the set
of parking plans in the model, i.e. the master problem is given by (7)-(9), (11),
and xtp ≥ 0. We introduce dual variables πt for each t ∈ T and µe for each
e ∈ E. The former are associated with constraints (8), while the latter correspond
to constraints (9). A subproblem can then be identified for each depot track,
where the aim is to find an improving parking plan given the optimal solution
to the relaxed, restricted master problem. Such an approach allows one to only
generate those parking plans that have the potential to improve the objective
function and avoid considering many variables that will assume a non-basic status
in the optimal linear programming solution. As Freling et al (2005) points out,
the problem of generating favourable reduced cost parking plans can be modeled
as a Resource Constrainted Shortest Path (RCSP). We provide a brief overview
of this in Section 5.2.1. In particular, we show how the methodology is applied to
depot tracks that function as LIFO stacks. This overview is necessary in order to
be able to follow the dominance counter example we provide in Section 5.2.2.

5.2.1 Resource Constrained Shortest Path

RCSP problems typically arise in the application of column generation to vehicle
routing and crew rostering problems. The problem entails finding a shortest path
between two nodes of a network, while adhering to a number of so-called resource

constraints. The network is graphical representation of the problem at hand, while
the resource constraints impose restrictions on the solution to the subproblem.
To model the TUP, Freling et al (2005) introduce an acyclic layered network. In
addition to a source node, O and sink node D, the node set contains two nodes
for each event e ∈ E for LIFO tracks. The first indicates the event is parked on
the track and other indicates the opposite. The nodes for each event constitute a
layer, and these layers are sorted by the arrival time of the corresponding events.
Arcs are used to connect the nodes of one layer with nodes in the subsequent layer.

The source node is connected to nodes in the first layer, while the nodes of the
last layer are connected to the sink. Figure 1 gives an example of such a network
for the TUP with five events. The arcs represent parking choices: whether to park
an event on the track or not. The cost of an arc is the reduced cost contribution
of the event. In other words, it is the cost of parking the event cet minus the dual
value on the constraint it covers, µe. For convenience, πt is included on the first
event. Rectangles are used to indicate layers.

O

1

1

2

2

3

3

4

4

5

5

D

c1t
− µ

1
− π

t

c2t − µ2 c3t − µ3 c4t − µ4 c5t − µ5

c 2
t
−
µ 2

c 3
t
−
µ 3

c 4
t
−
µ 4

c 5
t
−
µ 5

Fig. 1 An example subproblem network with five events. Every event constitutes two nodes
that indicate whether the event is parked or not on the track. All paths originating in O and
terminating in D represent a plan, which is feasible if the resource constraints are respected.

It is clear to see that enumerating all paths in this network would provide
all subsets of the considered events. However, not all subsets are feasible. The
resource constraints that must be observed are the remaining length of the depot
track being considered and the minimum departure time of events parked on the
track in a partial path. The first ensures track capacity is never violated, while
the second prevents conflicting movements from being parked on the track. RCSP
problems are typically solved using a label setting algorithm in which the nodes
are considered in topological order. A label is associated with a particular node
and contains information about the partial path to that point, i.e. the cost and the
values each of the resource levels. New labels are generated by extending a label
at a given node to each of the node’s successor nodes. The new label reflects the
label from which it is generated, updated with any changes to resource levels that
have occurred in transitioning the arc. Dominance strategies are used to restrict
the number of labels generated. For an introduction on solving RCSPs, the reader
is referred to Irnich and Desaulniers (2005) and Irnich (2008).

5.2.2 Dominance Rule Counter Example

The proposed solver for the subproblem described in section 5.2.1 is similar to the
Dynamic Program Algorithm described and tested by Freling et al (2005). Their
algorithm is more general, as it can handle free tracks. We should therefore also
be able to adopt their algorithm for our problem, however, we have identified an
error in their algorithm.

The proposed domination rule presented by Freling et al (2005) is in fact
incorrect. Granted, the overall column generation framework in the paper is a

A [8:00-16:00] B [9:00-12:00]

100m 100m

230m

remaining: 30m

C [9:00-13:00] D [10:00-13:00]

110m 100m

230m

remaining: 20m

F [14:00-17:00]

150m

Fig. 2 Example of two partial parking plans. The boxes represent train units of individual
lengths and parking durations. Both plans do not park event E, leaving them in the same
state (node in the graph), thus making it possible to check for dominance. The lower pattern
can not be dominated since the upper pattern cannot include event F in contrast to the lower
pattern. If F has a negative cost, then a feasible and better pattern is wrongly pruned.

heuristic as columns are solely generated in the root node. However, the described
algorithm for the subproblem does not guarantee optimal solutions because the
described domination rule is faulty. We prove this by issuing a counter-example
where the algorithm fails to find an optimal solution. We note that the solutions
produced by the incorrect algorithm are always feasible, which essentially makes
the algorithm a heuristic approach. Freling et al (2005) state the following in
section 5.2.2:

A path pi ∈ Pu is dominated by a path pj ∈ Pu if all the resource variables
of pi are dominated by those of pj

This is a standard domination rule that is valid for regular resource consumption
problem. Parking on tracks is however a somewhat temporary resource consump-
tion as it occupies the tracks for a limited time, and blocks units behind it during
this period. The resources in question are the total cost, the remaining length of
a track (path) and the “earliest departure time of the blocks in path p, which
had not left as of the time of node u”, p269. In the case of a LIFO track the last
resource is the departure time of the outmost rolling stock, i.e., the unit which is
blocking all the other ones on the track.

Our counter-example is illustrated in Figure 2. In the example a 230 meter track
is considered, together with events {A,B,C,D,E, F}, arriving in the listed (alpha-
betical) order. Assume the costs of the events to be {−2,−2,−1,−2, 10,−10},
respectively. Consider the case where the solver is testing whether one label (i.e.
parking plan) dominates the other one. Assuming that unit E arrives before either
B or D have left, the current state of each label remains the same when processing
the node indicating that E will not be parked (see Figure 1). At this point the top
label and bottom labels have resource consumption vectors (−4, 30, 12 : 00) and
(−3, 20, 13 : 00). It is clear that by definition the bottom label is dominated be-
cause it has a higher cost, less remaining track capacity and the earliest departure
time is greater. However, the optimal solution {C,D, F} with cost -13 will not be
found, as the prefix {C,D} has been pruned.

In our preliminary results we identified cases where the non-optimal dominance
actually results in non-optimal solutions. As expected, the simpler non-optimal

dominance results in faster solution times. The method could therefore be used
as an heuristic to speed up overall convergence in a BAP framework. Hence, we
revise the dominance criteria. In our approach, domination between labels only
occurs, if in addition to the remaining length and cost criteria, all units currently
parked on the track in one label have an earlier (or identical) departure time than
those of the other label.

5.2.3 Constraint Branching

To ensure optimality of the column generation framework, we utilise the well
known constraint branching technique, developed by Ryan and Foster (1981), for
solving set partitioning problems. In an optimal, but fractional solution to such a
problem there exists two constraints (say c1 and c2) such that

∑
j∈J(c1,c2)

xj < 1,

where J(c1, c2) defines the set of variables that cover both constraint c1 and c2.
Two branches are then created by ensuring that either

∑
j∈J(c1,c2)

xj ≥ 1 (one

branch), or
∑

j∈J(c1,c2)
xj ≤ 1 (zero branch). On the one branch both constraints

must be covered by the same variable, while in the zero branch, they must be
covered by different variables. For the TUP, we branch on track and event pairs.
In other words, on the one branch, an event is forced onto a depot track, while
on the zero branch it is prohibited from using a given depot track. In an optimal,
fractional solution, the track and event pair with the closest fractional coverage to
0.5 is selected to branch on.

When branching, all variables that are in the master problem and which do
not satisfy the imposed branches are removed, and the subproblems are modi-
fied to ensure they return parking plans consistent with the imposed branches.
One advantage of this constraint branching approach is that minimal changes to
the subproblems are required. Except form removing selected columns the master
problem remains unchanged. When branching, we adopt a depth first strategy in
which we successively enforce one branches.

5.3 Unit Swapping

If not all units can be parked in a solution to the TUP, before rejecting the
unit routing solution we attempt to swap “interchangeable” units. We consider
two units to be interchangeable if they are of the same unit type and if, after
swapping, the resulting routes can be performed feasibly (i.e. without violating
maintenance levels). A swap results in an exchange of the departure times of the
two events in question. To swap units, we propose a heuristic that iterates over
the set of unparked units, U and, for each, identifies a set of swapping possibilities
Su by considering the track assignment of each of the parked events in the depot
(at the unparked unit’s scheduled arrival time) as well as the next units to arrive;
i.e. we attempt to swap an unparked unit with an already parked unit (one at the
front of a stack) or with one of the next units to arrive, using the solution to the
TUP. Algorithm 1 gives an overview of the procedure.

The algorithm terminates when no unparked events exist, no swapping pos-
sibilities remain, or an upper limit on iterations has been reached. We allow one
swap per track at each iteration. Swap possibilities are ranked such that a unit with

Algorithm 1 Unit Swapping Heuristic Heuristic

1: procedure UnitSwap(sol)
2: iterations← 0
3: swappable← true
4: while unparked units exist and swappable and iterations < limit do
5: U ← getUnparkedUnits(sol);
6: S ← ∅
7: for u ∈ U do
8: Su ← ∅
9: for t ∈ T do

10: Sut ← createSwapPossibilities(sol, t, u, uarr)
11: Su ← Su

⋃
Sut

12: S ← S
⋃
Su

13: if swapping possibilities exist then
14: rankSwaps(S)
15: performSwaps(S)
16: sol← resolveDepot()
17: else
18: swappable← false

fewest swaps is considered first. To ascertain the impact of the chosen swaps, the
depot is resolved. The algorithm’s sequential nature makes it inherently heuristic.

5.4 Integrated Rolling Stock and Depot Framework

In the following we propose a framework that solves the Depot Problem and Rolling
Stock Scheduling simultaneously in an integrated loop. The main assumption in
this framework is that the depot problem is a feasibility problem, i.e., only the
rolling stock schedule contributes to the objective and that no cost stems from the
depot problem. An overview of the framework in shown in Figure 3.

The first component is an exact method for determining an optimal rolling
stock schedule. We adopt the BAP method of Haahr et al (2014) to solve the
problem. In principal, any method can be used that fulfills a few criteria. In this
integrated loop the method must provide the activities for each individual rolling
stock as well as the compositions formed on each train trip service such that events
can be identified.

The second component is the Depot Movement Planner that solves the problem
presented earlier in Section 2. In this paper we presented two different approaches
for solving this problem, c.f. Section 4. Either one can be used interchangeably but
during testing we will adopt the MIP based method.Using the found rolling stock
schedule we derive all arrival and departure events by inspecting coupling- and
decoupling performed in the schedule. The scheduled events and the predefined
initial fleet positions define the input to the Depot Movement Planner. A globally
feasible and optimal solution is found if a depot movement plan can be found for
each individual depot.

If no feasible depot movement plan exists for the provided rolling stock schedule
we can conclude that the specified events are unparkable. However, there may
exist multiple rolling stock route assignments for obtaining the same composition
assignment of the train trips. Note, that an underlying assumption is that cost of a
rolling stock schedule is entirely determined by the composition assignment. Thus,

Problem

Solution

Infeasible

Fig. 3 Diagram illustrates the flow in the integrated framework. The framework consists of
three major components connected in a loop. In the loop a rolling stock schedule is found
first. This schedule is fed to the depot planner. The loop terminates if a feasible depot plan
exists, otherwise the framework tries to swap units in the depot. If no suitable swapping can
be found, then the rolling stock assignment is rejected, and another one must be found.

if a no valid parking plan exists for the current rolling stock routes, then there may
still exist another set of routes which is feasible. Since enumerating all possible set
of routes is intractable we instead propose a method to identify potential swapping
points for the current routes. The method is described in Section 5.3.

If a feasible unit swapping can be obtained, such that units can be parked, we
have found a globally feasible and optimal solution. Note, that unless we apply an
exact method for swapping units, the overall is not guaranteed to be optimal. In
this paper we adopt a heuristic method.

Finally, if no feasible depot movement parking can be found in the unit swap-
ping method the framework rejects the rolling stock composition. A cut is gen-
erated, based on the infeasible depot, such that the combination of composition
trip assignments, either originating or terminating at this depot, are prohibited.
Resolving the rolling stock schedule with the added constraint will therefore find
a new schedule and a new iteration in the loop is initiated.

6 Computational Results

To determine the best way of solving the TUP we benchmark the approaches
described in Section 6 on a test set of 11 artificial data sets. The TUP is a sub-
component of a larger framework and it is critical that this is efficient as possible.
We provide an overview of this benchmarking in Section 6.1. Results of the inte-
grated framework on DSB-Stog case studies are given in Section 6.2.

6.1 TUP Benchmark

We begin with a short description of the artificial data sets. Artificial data sets
have been chosen as the provide the flexibility to vary the level of, among other

things, the level of infeasibility, the number of events and depot tracks, as well as
the number of unit types. Table 1 states the most important characteristics of each
instance. For each instance the following information is provided: the number of
events, the number of depot tracks, the length of the longest track (denoted Lmax),
the planning horizon, the number of unit types, and the unit type lengths. Note
that the instances have been purposely created with infeasibilities, and that these
are in line with the size of the problems DSB-Stog faces.

Instance |E| |T | Lmax Horizon (s) Types Unit Lengths
data0 66 6 300.0 17113 2 [35,70]
data1 69 6 500.0 17785 2 [35,70]
data2 62 5 850.0 21103 2 [42,84]
data3 75 5 850.0 24837 3 [30,60,90]
data4 72 5 700.0 21602 2 [42,84]
data5 59 5 740.0 21602 3 [30,60,90]
data6 79 5 800.0 25202 2 [35,70]
data7 79 6 790.0 25202 3 [35,50,75]
data8 78 7 900.0 24897 1 [42]
data9 101 8 1000.0 24964 2 [42,84]
data10 109 8 400.0 28529 2 [42,84]

Table 1 Test instances

BAP Framework BAC1 BAC2 FEL
Instance Z∗ cols n l t (s) t (s) t (s) % t (s) Z

data0 8 1030 37 18 1.33 3.21 * 12.50 1.30 11
data1 6 1317 41 20 1.74 0.36 * 16.67 1.43 7
data2 7 727 13 6 0.75 0.12 5.05 0.00 0.41 8
data3 8 1181 23 11 1.71 0.11 7.63 0.00 2.38 10
data4 11 834 25 12 1.05 0.14 * 9.09 1.17 14
data5 4 754 29 14 0.98 0.05 1.09 0.00 0.43 8
data6 11 841 17 8 1.18 1.99 * 36.36 0.58 14
data7 8 1740 41 20 2.18 1.76 * 12.50 1.83 9
data8 1 3236 99 49 4.86 0.05 0.36 0.00 3.78 1
data9 3 5125 87 43 17.33 0.42 * 66.67 6.78 3
data10 0 2413 147 73 6.14 0.23 1.29 0.00 5.17 0

Table 2 Method Comparison

We solve each of the instances in Table 1 using four different methods: our
BAP approach, two BAC approaches, and the column generation approach of Frel-
ing et al (2005) combined with constraint branching. BAC1 is a direct solve of
Model (1)-(6) (with default Gurobi cut generation), while BAC2 also separates
violated LIFO cuts. For our BAP approach we report the number of columns gen-
erated (cols), the number of nodes in the BAP tree (n), the deepest level of same
tree (l) and the time needed to solve the instance (t). For the two BAC approaches
we give the time and, for BAC2, the gap from optimality at termination. For Frel-
ing et al (2005), we give the solution time along with the objective value obtained,
Z. For every instance we give Z∗, the optimal solution, which counts the number
of unparked units. The results are given in Table 2. All tests have been performed

on Intel(R) Xeon(R) CPU X5550 @ 2.67GHz with 24GB ram running Ubuntu
Linux 14.04. The commercial solver Gurobi 6.0 is used for both BAC approaches,
while Cplex 12.61 is used to solve the LP relaxations of the other two methods.
An upper bound of 10 minutes is enforced on the solution time. From the results
it can be seen that BAC1 is the most superior, and that the approach of Freling
et al (2005), while faster than the BAP, provides suboptimal solutions.

In addition we also report the results of the swapping heuristic; these are given
in Table 3. We compare the BAP approach with BAC1. For each we report the new
objective (Z), the number of swaps, and the time taken. For any instance, up to 30
swapping iterations are allowed. In almost all cases feasibility through swapping
can be achieved, and the heuristic nature is seen by the fact the two approaches
yield different results at times. Currently the number of swaps is not optimized;
however, this “re-matching” problem could also be performed via a MIP if running
times are fast enough.

Column Generation BAC1

Instance Z∗ Z Swaps t (s) Z Swaps t (s)

data0 8 0 12 7.383 0 19 3.39
data1 6 0 10 20.35 0 11 4.31
data2 7 0 11 5.50 0 16 1.33
data3 8 0 12 15.08 3 15 2.90
data4 11 1 21 126.10 1 16 5.12
data5 4 0 4 3.04 0 5 0.21
data6 11 0 22 18.748 1 18 15.58
data7 8 1 16 145.32 0 18 44.17
data8 1 0 1 8.70 0 1 0.14
data9 3 0 4 42.27 0 4 1.23

Table 3 Swap Results

6.2 Integrated Rolling Stock and Parking

In this section we perform test on the integrated framework described in sec-
tion 5.4. We use a real-life timetable instances from the Suburban Railway Op-
erators in Copenhagen (S-tog). They operate a weekly schedule that consists of
four daily distinct timetables. The main distinction is between weekdays and the
weekend, but Friday and Saturday also include additional night train services.
The instances are shown in Table 4. The first results are listed in Table 5. Here we
have adopted a balanced set of penalties for seat-shortages, driven mileage, end-of-
day balance deviations, couplings and de-couplings, see Haahr et al (2015). These
initial results demonstrate runtimes which are acceptable for planning purposes.
However they also show that the all found rolling stock schedules are feasible, thus
the integrated loop only executed the first iteration.

The next benchmark generates schedules with more depot activity, thereby
potentially increasing the difficulty of the depot problems. For each instance we
gradually reduce the penalty of performing mid-trip couplings, i.e., couplings or
decouplings that do not occur at the beginning or end of a trip sequence. Trip

Name Stops Trips Trips* Weekday Lines

Fri 28 719 4 558 886 Friday A,B,Bx,C,E,F&H
Sat 20 474 1 916 590 Saturday A,B,C&F
Sun 19 919 1 871 574 Sunday A,B,C&F
Mon 28 017 4 468 868 Monday A,B,Bx,C,E,F&H

Table 4 Four timetables operated by DSB S-tog. The columns respectively show the in-
stance names, total number of stops, total number of trips, total number of non-reducible trips
(Trips*), weekday, and finally the lines that are running.

Depot

Instance Time (s) RS Tree Columns Solutions Feasible Infeasible

Fri 79 74% 14 4477.0 4.0 4.0 0
Mon 96 83% 7 5828.0 1.0 1.0 0
Sat 16 61% 9 1495.0 7.0 7.0 0
Sun 10 63% 5 1392.0 1.0 1.0 0

Table 5 Results when running integrated framework with previously tested penalties. The
columns respectively show instance name, runtime, percentage of runtime (in seconds) spent
by the rolling stock framework, number of processed nodes in the RS BAB tree, number of
generated columns, number of RS solutions founds, number of feasible RS solutions, and finally
number of infeasible RS solutions.

sequences usually span most of the day, shuttling between the same two terminal
stations. The results are shown in Table 6. We observe an expected increase in the
number of couplings as the penalty reduces, however this does not seem to affect
the feasibility of the corresponding depot problems.

7 Conclusions

We present and benchmark four different approaches for solving the depot parking
problem. Judging by the results there is no reason to favour the column generation
framework over the MIP based approach. However, it would be interesting to
see if one method scales better than the other with larger instances. Separating
violated LIFO constraints also seems tedious. A direct solve of the full MIP gave
the best results, solving each artificial instance within 4 seconds. These instances
do represent the largest depot facilities at DSB S-Stog. Due to the additional
complexity of implementing a column generation approach we deem it appropriate
for future research to consider a MIP based solution approach first. The complexity
is apparent since even formulating a correct domination criteria can include some
pitfalls. We have shown how a previously proposed approach is non-optimal, see
Freling et al (2005). In some cases there were significant differences between our
BAP framework, and the method of Freling et al (2005). Furthermore, run times
produced by the integrated framework are acceptable.

Rolling stock scheduling and depot parking planning have traditionally been
solved sequentially in isolation. Planners at S-tog have identified this sequential
approach problematic, as it is sometimes impossible to find a feasible parking plan
for initially found rolling stock schedules. Our tests did however surprisingly reveal
no difficulties in parking initially found rolling stock schedules. Results are found

Depot

Instance Cost Couplings Time (s) RS Solutions Feasible Infeasible

Fri 600 48 128 82% 1 1 0
700 41 154 78% 1 1 0
800 34 80 83% 1 1 0
900 30 94 77% 1 1 0

1 000 27 79 76% 4 4 0

Mon 600 45 218 82% 1 1 0
700 38 133 79% 4 4 0
800 32 116 84% 1 1 0
900 28 115 83% 1 1 0

1 000 26 111 84% 1 1 0

Sat 600 29 23 71% 1 1 0
700 25 18 68% 1 1 0
800 23 23 67% 1 1 0
900 21 13 64% 1 1 0

1 000 17 11 61% 7 7 0

Sun 600 37 23 70% 1 1 0
700 31 17 71% 1 1 0
800 28 12 68% 1 1 0
900 26 13 66% 1 1 0

1 000 22 9 63% 1 1 0

Table 6 Results when running integrated framework with different coupling penalties. The
columns respectively show instance name, coupling penalty, number of mid-trip couplings,
runtime, percentage of runtime (in seconds) spent by the rolling stock framework, number
of RS solutions founds, number of feasible RS solutions, and finally number of infeasible RS
solutions.

in reasonable time for planning purposes, and in future work we will investigate
other aspects of the parking problem which may lead to infeasibility in real-life.

In future work we also want to investigate alternative integrated frameworks
for finding rolling stock schedules and depot parking plans simultaneously. The
main drawback of the current framework is the high complexity of performing
swaps optimally without enumerating too many rolling stock unit paths.

Previous work in literature includes some modelling choices with respect to
train compositions and marshalling. This addition has been omitted in this work
and seems like an obvious choice for future research.

References

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-
and-price: Column generation for solving huge integer programs. Operations Research
46(3):316–329

Blasum U, Bussieck MR, Hochstättler W, Moll C, Scheel HH, Winter T (1999) Scheduling
trams in the morning. Mathematical Methods of Operations Research 49(1):137–148

Boysen N, Fliedner M, Jaehn F, Pesch E (2012) Shunting yard operations: Theoretical aspects
and applications. European Journal of Operational Research 220(1):1–14

Desrosiers J, Lübbecke ME (2010) Branch-price-and-cut algorithms
Desrosiers J, Lübbecke M, Solomon MM (2005) Column generation. In: Desaulniers G,

Desrosiers J, Solomon MM (eds) A Primer in Column Generation, Springer: New York,
chap 1, pp 1–32

Fioole P, Kroon LG, Maróti G, Schrijver A (2006) A rolling stock circulation model for
combining and splitting of passenger trains. European Journal of Operational Research
174(2):1281–1297

Føns P (2006) Desicion support for depot planning in the railway industry. Master’s thesis,
Technical University of Denmark

Freling R, Lentink RM, Kroon LG, Huisman D (2005) Shunting of passenger train units in a
railway station. Transportation Science 39(2):pp. 261–272

Gallo G, Miele FD (2001) Dispatching buses in parking depots. Transportation Science
35(3):322–330

Gatto M, Maue J, Mihalák M, Widmayer P (2009) Shunting for dummies: An introductory
algorithmic survey. In: Ahuja RK, Möhring RH, Zaroliagis CD (eds) Robust and Online
Large-Scale Optimization, Lecture Notes in Computer Science, vol 5868, Springer Berlin
Heidelberg, pp 310–337

Haahr J, Lusby R, Larsen J, Pisinger D (2014) A Branch-and-Price Framework for Railway
Rolling Stock Rescheduling During Disruptions. DTU Management Engineering

Haahr JT, Kroon LG, Veelenturf LP, Wagenaar JC (2015) Comparing two exact methods
for passenger railway rolling stock scheduling. In: Hansen I (ed) Proc. 6th International
Conference on Railway Operations Modelling and Analysis (RailTokyo2015)

Haijema R, Duin C, van Dijk NM (2006) Train Shunting: A Practical Heuristic Inspired by
Dynamic Programming, John Wiley & Sons, Inc., pp 437–475

Hamdouni M, Desaulniers G, Marcotte O, Soumis F, van Putten M (2006) Dispatching buses
in a depot using block patterns. Transportation Science 40(3):364–377

Hamdouni M, Desaulniers G, Soumis F (2007) Parking buses in a depot using block patterns:
A benders decomposition approach for minimizing type mismatches. Comput Oper Res
34(11):3362–3379

Irnich S (2008) Resource extension functions: properties, inversion, and generalization to seg-
ments. OR Spectrum 30(1):113–148

Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. In: De-
saulniers G, Desrosiers J, Solomon M (eds) Column Generation, Springer US, pp 33–65

Jacobsen PM, Pisinger D (2011) Train shunting at a workshop area. Flexible Services and
Manufacturing Journal 23(2):156–180

Kroon L, Huisman D (2011) Algorithmic support for railway disruption management. In:
Nunen JA, Huijbregts P, Rietveld P (eds) Transitions Towards Sustainable Mobility,
Springer Berlin Heidelberg, pp 193–210

Kroon LG, Lentink RM, Schrijver A (2008) Shunting of passenger train units: An integrated
approach. Transportation Science 42(4):436–449

Lentink RM, Fioole PJ, Kroon LG, van’t Woudt C (2006) Applying Operations Research
Techniques to Planning of Train Shunting, John Wiley & Sons, Inc., pp 415–436

Nielsen LK (2011) Rolling stock rescheduling in passenger railways. PhD thesis, Erasmus
University Rotterdam

Nielsen LK, Kroon L, Maróti G (2012) A rolling horizon approach for disruption management
of railway rolling stock. European Journal of Operational Research 220(2):496–509

Padberg M, , Rinaldi G (1987) Optimization of a 532-city symmetric traveling salesman prob-
lem by branch and cut. Operations Research Letters 6(1):1–7

Ryan DM, Foster BA (1981) An integer programming approach to scheduling. In: Wren A (ed)
Computer Scheduling of Public Transport: Urban Passenger Vehicle and Crew Scheduling,
North-Holland, pp 269–280

Schrijver A (1993) Minimum circulation of railway stock. CWI QUARTERLY 6:205–217
Stefano GD, Koči ML (2004) A graph theoretical approach to the shunting problem. Electronic

Notes in Theoretical Computer Science 92(0):16 – 33, proceedings of ATMOS Workshop
2003

van Wezel W, Riezebos J (2011) Case study: Advanced decision support for train shunting
scheduling. In: Fransoo JC, Waefler T, Wilson JR (eds) Behavioral Operations in Planning
and Scheduling, Springer Berlin Heidelberg, pp 413–430

Winter T, Zimmermann UT (2000) Real-time dispatch of trams in storage yards. Annals of
Operations Research 96:287–315

