CASPT 2015

Modelling Urban Public Transportation Networks to
Support Robust Routing

Katefina Béhmova - Matads Mihalak -
Tobias Proger - Peter Widmayer

Abstract Given an urban public transportation network and historic delay
information in a form of past observations, our goal is to suggest reliable jour-
neys. We describe a theoretical model for the network and discuss challenges
that arise when modelling real-world situations.

Keywords Modelling - Robustness - Route planning - Public transportation

1 Introduction

Motivation. Consider a dense public transportation network in which buses,
trams, metros, etc. operate with high frequency. Imagine that we would like
to travel from a departure stop d to a target stop ¢, and that it is important
to arrive at t no later than at time t 4. Determining the right moment to leave
d is nontrivial: Although we want to arrive at t not later than at time t4,
we don’t want to leave d much too early. In an ideal situation, every bus and
every tram is on time, and it is sufficient to compute a journey that is planned
to leave d as late as possible but still reaches ¢ at the latest at t4. However,
an empirical study performed by Firmani et al (2013) on the transportation
network of Rome indicates that the timetable information and real movement

This work has been partially supported by the Swiss National Science Foundation (SNF) un-
der the grant number 200021 138117/1, and by the EU FP7/2007-2013 (DG CONNECT.H5-
Smart Cities and Sustainability), under grant agreement no. 288094 (project eCOMPASS).
Katefina Bohmova is a recipient of the Google Europe Fellowship in Optimization Algo-
rithms, and this research is supported in part by this Google Fellowship. Parts of this work
appeared in Béhmov4 et al (2013).

K. Béhmov4a, T. Préger, P. Widmayer
Department of Computer Science, ETH Ziirich, Switzerland
E-mail: katerina.boehmova@inf.ethz.ch, tobias.proeger@inf.ethz.ch, widmayer@inf.ethz.ch

M. Mihaldk
Department of Knowledge Engineering, Maastricht University, The Netherlands
E-mail: matus.mihalak@maastrichtuniversity.nl

of the vehicles (based on GPS data) are only mildly correlated. We performed
a similar study on the public transportation network of Ziirich and were able
to observe a comparable behaviour. Thus, routing based solely on a scheduled
timetable without considering the occurrence of delays may lead to solutions
of quite an unsatisfactory quality. Since in reality we always should expect
delays, we study the problem of finding robust journeys from d to ¢ that likely
arrive before time ¢4, but still leave d at a “reasonable” time (i.e., not much
earlier than necessary).

Why real-time information alone is not sufficient. Since nowadays many net-
work operators provide real-time information that indicate the current position
of the vehicles (and also current delays), one might be tempted to argue that
the computation of robust journeys is not really essential any more. However,
we do not share this point of view. First, real-time information does not help
if the journey is planned some time in advance (such as, e.g., few hours ear-
lier). Second, in reality it often happens that delays occur suddenly and can
not be foreseen in advance, especially not at the time when the journey is
planned. For example, consider an dt-journey that consists of two lines {; and
l2, and imagine that the transfer time between the lines is 2 minutes. Even if
l1 leaves d on time, every upcoming delay of more than 1 minute (which might
always occur) leads to a late arrival at ¢. Thus, considering just real-time data
might not be sufficient in many situations.

Related work: Finding fast journeys. The task of finding a fastest (but not
necessarily robust) journey in the planned timetable of a public transporta-
tion network has been extensively considered in the literature. Common ap-
proaches model the network as a graph and compute a shortest path in this
graph (see Miiller-Hannemann et al (2007) for a survey). The most widely con-
sidered graph-based models are the time-dependent (Brodal and Jacob (2004);
Nachtigall (1995); Orda and Rom (1990, 1991)) and time-expanded (Miiller-
Hannemann and Weihe (2001); Pallottino and Scutella (1998); Schulz et al
(2002)) models. Various improvements have been developed, and experimen-
tal studies suggest that these can also be used in practice (see, e.g., Bauer
et al (2011); Delling et al (2009); Pyrga et al (2008)). Recent approaches (e.g.,
Delling et al (2012); Dibbelt et al (2013)) avoid the construction of a graph and
process the timetable directly. For example, Delling et al (2012) described a
strategy which is centred around transportation lines (e.g., train or bus lines).
When considering the arrival time and the number of stops as criteria, it can
be used to find all pareto-optimal journeys. Bast et al (2010) observe that for
two given stops, we can find and encode each sequence of intermediate transfer
stations (i.e., stations where we change from one line to another) that can lead
to an optimal route. The set of these sequences of transfers is called transfer
pattern. These patterns can be precomputed, leading to very fast query times.

Related work: Finding robust journeys. The problem of computing robust jour-
neys in public transportation networks has been studied before. Many authors

(e.g., Boyan and Mitzenmacher (2001); Dibbelt et al (2013); Frank (1969);
Nikolova et al (2006)) model congestion using stochastic methods, e.g. they
assume that stochastic delays on edges or vehicles are known. Disser et al
(2008) extended Dijkstra’s algorithm for computing pareto-optimal multi-
criteria journeys using a given fixed timetable. They defined the reliability of
a journey as a function depending on the minimal time to change between two
subsequent trains, and used it as an additional criterion. Miiller-Hannemann
and Schnee (2009) introduced the concept of a dependency graph to predict
secondary delays caused by some current primary delays, which are given as
input. They showed how to compute an optimal journey with respect to these
predicted delays. Goerigk et al (2011) assumed that a set of delay scenarios is
provided, and showed how to compute a journey that arrives on time in every
scenario (i.e., a strict robustness approach). This approach requires a feasible
solution for every realisation of delays for every event. This is quite conserva-
tive, as in reality not every combination of event delays appears. Furthermore,
they introduced the concept of light robustness, which aims to compute a jour-
ney that maximises the number of scenarios in which the travel time of this
journey is not more than a fixed time worse than the optimum.

Our contribution. Instead of modelling delays explicitly, our goal is to infer
delay information implicitly from historic traffic data. Also, we are interested
in the robustness of complete journeys, and not on computing concrete delay
distributions for concrete edges in the public transportation network. This is
reasonable from the user’s perspective: If our journey consisted of two lines [
and [y, and if the transfer time between these lines was 2 minutes, then the
information that [; is delayed by 2 minutes is only helpful if also the delay of
I3 is known. If, for example, all lines in the network were delayed by 2 minutes,
then any planned transfer between two lines was also feasible in reality. The
only difference between the real and the planned journey is that the overall
travel time increases by 2 minutes, which might be acceptable. However, if only
some lines were delayed so that certain planned transfers become infeasible in
reality and has to wait a long time (e.g., an hour or even the whole night) for
some vehicle, then this is a serious issue from the user’s perspective.

Since our goal is to infer robust journeys from past data, we need a solution
concept that allows journeys to be comparable over different past days. Thus,
classical solutions concepts such as time-expanded or time-dependent graphs
are not suitable any more. In Bdhmovd et al (2013), we introduced a new
approach for finding robust journeys that investigates how journeys performed
in past instances. Similarly to more recent approaches we try to exploit the
problem structure explicitly (e.g., by considering lines) instead of implicitly
modelling properties into a graph. In the present paper, we shortly describe
our solution concept and then discuss some consequences of such a modelling—
various issues arising when modelling real-world situations.

2 Model

Stops and lines. Let S be the set of stops of the public transportation network.
A line is an ordered sequence (si,...,sk) of stops from S, where s; is served
directly before s;41, and £ denotes the set of all lines. We explicitly distinguish
two lines that serve the same stops but have opposite directions; see Section 4
for details. For 3 € Ny, a sequence of lines 7 = (l1,...,ls11) € LA+ is called
an dt-route if there exist 8 + 2 stops sg := d, s1,...,58,538+1 := t such that
for every ¢ € {1,...,8 + 1}, both stops s;—1 and s; are served by the line I;,
and s;_1 is served (not necessarily directly) before s;. For i € {1,..., 8}, we
say that a transfer between the lines l; and [;41 occurs at the transfer stop s;.
Notice that in general there might exist multiple transfer stops between two
lines. We also note that a route might contain a line [€ £ multiple times. For
a destination stop d € S, a target stop t € S and an integer 5 € Ny, let Rgt
denote the set of all dt-routes with at most 8 transfers.

Trips and timetables. While the only information associated with a line itself
are its consecutive stops, it usually is realised multiple times per day. Each of
these concrete realisations is called a trip. A timetable stores for every stop
s € § all daily arrival and departure times of every trip that contains s. Since
we want to learn from past observations, we assume that we have a set T of
recorded timetables T; that describe how various lines were operated during a
given time period (e.g., on a concrete day).

In many networks, there also exists planned timetable Tp4nneqa. We assume
it to be periodic, i.e., every line realised by some trip 7 will be realised by
a later trip 7/ again (not necessarily on the same day). If such a timetable
is available, then the recorded timetables in 7 are concrete executions of the
planned timetable.

In the following, timetable refers both to the planned as well as to a recorded
timetable. We assume that timetables respect the FIFO property, i.e. two buses
or trams of the same line do not overtake each other.

Goal. Let d,t € S be the departure and the target stop, 5 € Ny be the
maximum number of allowed transfers, Rd’Bt the set of all dt-routes with at
most [transfers, t4 the latest allowed arrival time at ¢, and T a set of
recorded typical timetables for comparable time periods (e.g., daily record-
ings for the past Mondays). A journey j consists of a departure time t},, a
route 7; = (l1,...,lat1) € RY, for some o < 3, and a sequence of transfer
stops (s1,. .., 5q). The intuitive interpretation of such a journey is to be physi-
cally present at the departure stop d at time ¢7,, take the first arriving (vehicle
of) line I;, and for every i € {1,...,a}, leave line ; at stop s; and take the
next arriving line /;; ;1 immediately. Our goal is to use the recorded timetables
in 7 (and the planned timetable, if available) for computing a travel recom-
mendation in form of one or more (robust) journeys from d to ¢ that will likely
arrive on time (i.e., at time ¢4, or earlier) on a day for which the concrete
travel times are not known yet.

For obtaining meaningful results (i.e., recommendations that really arrive
on time) in real-life applications, it is important that the situation in which
the timetables in T were obtained is comparable to the situation for which the
recommendation is computed. This of course does not mean that the timetables
in 7 should not contain too many delays (otherwise there wouldn’t be a need
for robust routing), but extern circumstances such as the day of the week or
the season should be comparable. For example, road traffic on Wednesdays is
different from the traffic on Mondays or Fridays, hence T should only contain
timetables that were recorded on the same day of the week as the day for which
a journey recommendation is requested. Also, traffic in winter usually differs
substantially from traffic in summer due to different weather conditions. In this
paper, we will not pursue the issue of identifying typical situations further.

3 Computing Robust Journeys

Overview. For computing computing robust dt-journeys, the first step consists
in listing all routes in R’gt. This can be done by a modified depth-first search on
the graph with the vertex set £ in which two vertices l;,1; € £ are connected
if and only if the lines /; and [; have a common stop. Unlike depth-first search,
the algorithm considers an edge (l;,{;) only if {; and [; have at least one
common stop that is served by I; after the stop on which [; was boarded. Also,
if the algorithm reaches a vertex I; that has been visited in some previous
step, we need to visit all outgoing edges from [; again because [; was probably
reached by a different edge than the edge used in the previous step. For more
information, refer to Béhmova et al (2013). For the situation when one is
interested in listing not only routes but also the corresponding paths in the
underlying network, Béhmov4 et al (2014b) presented an algorithm that has
a polynomial running time with respect to both the input and the output
size. This algorithm traverses the network in a depth-first fashion, and for
bounding the running time a stop s is visited only if there exists an st-route
with sufficiently few transfers.

After listing all possible routes, we select one or more optimal route(s)
r1,...,7% with one of the methods below. Furthermore we compute corre-
sponding numbers 7, ..., € N that describe how much in advance we have
to leave d. If a planned timetable Tpanneq is available, then we use it to find
the planned journey(s) j; along r; that leave d as late as possible, but not
later than time t4 — 7y;. Otherwise we associate the journey j; with the route
r;, use the first possible transfer between two lines and set the departure time
to t'y = t4 — ;. Thus, instead of finding robust journeys it is sufficient to
compute a robust route r and the corresponding parameter ~.

A similarity-based approach. In Bohmova et al (2013), we described how a
general approach to robust optimisation designed by Buhmann et al (2013)
can be applied for computing robust journeys. Let T € T be a timetable and
v € No. An approzimation set A, (T) contains all routes r € R?, for which

Time

S

d 5 5, S5 t

Fig. 1 A timetable with five lines {1,...,5} and two routes r1 = (1,2,3) (solid) and
ro = (4,5) (dotted). The z-axis illustrates the stops {d, s1, s2, s3,t}, the y-axis the time. If
a trip leaves a stop s; at time ¢; and arrives at a stop s, at time ¢4, it is indicated by a line
segment from (s, ;) to (Sa,ta). Ay(T) contains r1 three times and r2 once.

there exists a journey along r that departs from s at time ¢4 — -y or later, and
that arrives at ¢ at time t4 or earlier (both times refer to the timetable T').
We assume that A, (T) is a multiset: a route r is contained as often as it is
realised by a journey starting at time t4 — v or later, and arriving at time t4
or earlier (see Figure 1 for an example). The parameter v can be interpreted as
the maximal time that we depart before ¢ 4. If we consider approximation sets
A, (Th),..., A (Ty) for some timetables T4,...,Ty € T, every approximation
set contains only routes that are realised in the same time period [t4 — 7, t4],
and that are therefore comparable among different approximation sets.

The approach of Buhmann et al (2013) expects that exactly two timetables
T1,To € T are given. To compute a robust route when only two timetables are
available, we consider A, (7T1) N A(T%): the only chance to find a route that
is likely to be good in the future is a route that was good in the past for both
recorded timetables. The parameter v determines the size of the intersection: if
~ is too small, the intersection will be empty. If 7y is too large, the intersection
contains many (and maybe all) st-routes, and not all of them will be a good
choice. Assuming that we knew the “optimal” parameter yopr, we could pick
a route from A, ., (T1) N Ay, pr(T2). Buhmann et al (2013) suggest to set
~Yopr to the value v that maximises the so-called similarity of the timetables
Ty and T, at value v,

RAIAL (T AL (T)
S = A @) W

After computing yo pr and picking a route r from the intersection, we use the
planned timetable T}ianneq to find a journey along r that is scheduled to leave
s not later than t 4 — yopr, and use this journey as a recommendation to the
user. For more details, refer to Buhmann et al (2013); Bohmova et al (2013).

Other methods. A straightforward method for finding robust routes is to en-
force an additional buffer time at each transfer or at the end of the journey.
The method in the previous paragraph is able to learn from past observa-
tions, but it considers only two recorded timetables. In practical applications

levening

lstandaTd

Laepot

Fig. 2 Different trajectories of one line.

usually more recordings are available. If the timetables 11, ..., T} are given,
a straightforward idea to generalise the method from the previous paragraph
is to compute the smallest v for which N*_; A, (T}) # 0 and select a route
from the intersection of the approximation sets. A different method based on
stochasticity is the following: for every route r, we compute the mean and the
standard deviation of the departure times of 7 in every timetable T;, and then
select a route that minimises the sum of mean and standard deviation. For
more details on these methods (among others), see Bchmov4 et al (2014a).

4 Modelling Challenges

When modelling an urban public transportation network and its behaviour,
we try to capture the properties specific to this domain. However, to make
a model reasonably simple and clear, we assume certain behaviour (e.g., the
FIFO property) of the vehicles. While such assumptions mostly hold, in reality
certain events can cause them to be violated and one has to decide whether and
how to model these situations. In the following we describe some challenges
that arise when dealing with real-world data (from Ziirich).

Defining the lines is a crucial and a nontrivial task. The available data
contain the set of stops, the planned timetable capturing the planned trips,
and a detailed information on the set of trajectories for each physical vehicle
during each of the days. The trajectories of physical vehicles are grouped
under different labels that are used as indicators for the passengers (the label
itself does not determinate the direction, nor the exact trajectory). However, a
problem arises: Not all the trajectories with the same label correspond to the
same sequence of stops. To illustrate this, imagine trajectories grouped under
the label [as in Figure 2. Most of the day, [serves the stops (a, b, ¢, d, e). Twice
a day it goes into the depot and serves (a,b,c,d, f), instead. In the evening,
it skips b and serves only (a, ¢, d, e). Once a vehicle turned around in advance
due to large delays and only the stops (a, b, ¢) were served (not planned). Even
though the user may perceive these sequences as variants of the same line [, it
is not clear whether to treat these lines together as one line or separately. For
instance, to travel from a to f, a trajectory labelled [is recommendable only
when [goes to the depot. In our model, we capture the provided information
in the following way. The set of stops directly corresponds to the given set of
stops. We define one line for every sequence of stops that occurs as a trajectory

in the (planned) reality (e.g., I from the example is modelled by 3 different
lines). Note that we define the lines to be directed, so that we can capture
the situations when the “backward” line differs, e.g., due to one way streets.
Clearly, even though this is a viable choice, it also has drawbacks. In the
following, we give some examples of real-world situations that influence the
lines and their consequences for the model and robustness.

4.1 Behaviour planned in the timetable

Standard realisation of a line. In most cases, a line [= (vq,...,vy) is realised
throughout the whole day with high frequency, and there exists a similar line
(a backward line) in the opposite direction I’ = (v, ..., v1) which contains the

same stops as line [but in reverse order.

Standard realisation changes over the day. In most of the cities, there are ob-
servable patterns of how people use public transportation. During the work
days, there are clearly visible peak hours, when people commute to or from
work. The planned schedule of public transportation services usually tries to
react to increased or decreased demand. As a consequence, the planned fre-
quency of a line may change during the day. Sometimes, the standard real-
isation of the line may change during the day as well, e.g., in the evening
realisation of the line, certain stops are left out completely (in Figure 2, the
line lcyening exhibits such a behaviour). As said, we model the different realisa-
tions as different lines. Usually, these lines have high frequencies during some
hours, but they may not run at all during the rest of the day. This clearly
brings difficulties when considering robustness issues. For example, trying to
catch, but missing a last vehicle (for that day) of a particular realisation of
the line may result in a significant delay of a commuter.

A wvehicle goes to the depot. Roughly twice a day, a vehicle serves a line lgepot
which partially corresponds to the line [, but differs at the end. The low fre-
quency of such a line is highly inconvenient for the robustness considerations.
Imagine a situation as in Figure 2. There may be multiple ways how to travel
from y to f, however, the only possibility to get from y to f with at most
one transfer might be to take the line Iy and switch to lgepor. If one travels
precisely at the time when ljepor runs and this journey worked well on the
previous days, it may be reasonable to recommend him this journey. However,
if I is then delayed, and the transfer to lgepo+ fails, one cannot continue the
recommended journey until the next line lgepor comes, few hours later (or even
only on the next day). It is not clear whether these journeys containing low
frequency lines should be recommended or not. On one hand, if in the past
observations they performed well, they should not be suppressed. On the other
hand, the failure mode is very inconvenient.

l backward I _— . ~~
v v v . v

a b c d e f g lforwm'd
l backward I / . .
v v v v .
a b c d e f g lfor ward

Fig. 3 The sequences of the forward and backward lines differ.

The sequence of stops of forward and backward line differs. Often, for reali-
sation of a line there is a “backward” line that serves the exact same stops,
but in the opposite order. However, in reality sometimes the backward lines
differ significantly. Such a situation is often caused by one way streets, and for
instance this can be widely observed in the bus network of Barcelona. Imagine
a situation as in Figure 3. To get from e to ¢, it may be necessary to trans-
fer from the line lforward t0 lpackward, Operating under the same label. In the
first case, the two lines are served by two different vehicles, and thus to trans-
fer from one to another, one must leave the vehicle. However, in the second
case, the two lines are in reality probably served by the same vehicle, that
immediately after serving lforward continues on lpgckward- Then, to transfer to
lbackward, one should simply stay in the vehicle. These situations need to be
modelled explicitly.

The line | in fact forms a cycle. In some rare cases, the line [does not have a
corresponding backward line going in the opposite direction. Instead, after the
last stop of the line [in one realisation, the vehicle which realised it continues
to the first stop of the next realisation of [, thus having a cyclic topology.
This is a situation that is rather difficult to capture, since in the data there
is some stop that is used as an origin of the line and the cycle is broken
accordingly into subsequent realisations of the line. That is, in reality, it might
be possible to continue from the last stop of one realisation of the line [to
the first stop of the next realisation of [, without a transfer (and without the
minimum transfer time needed). This can be modelled explicitly by gluing the
realisations together.

4.2 Behaviour not planned in the timetable

In reality, vehicles can always be delayed. If the delays are huge, it sometimes
happens that while waiting for a vehicle of line [, no vehicle arrives for a long
time and then suddenly many vehicles V1, Vs, ... arrive in short time intervals.
Once such a situation is established, it is even intensified: since the times
to pick up and drop off passengers increase (due a larger amount of waiting
passengers), also the delay of Vi and possibly also of some of the succeeding
vehicles increase. This may lead to the following situations.

lslow

a e] o le.bm'ess

Fig. 4 An example where using one line twice is reasonable. To travel from b to m, it may
be faster to travel using lg;0. up to e, change to (a faster line) lezpress and travel to j, and
finally change back to 04, in order to reach m.

A wvehicle turns back in advance. To avoid further delay or a dead end, the
network operator may decide that a vehicle should turn around in advance
before reaching the final destination. This results in a line that is realised
just partially (in Figure 2, the line liyrn_around 1s an example). When such a
situation occurs in the recorded timetables, we can simply set the arrival times
at the stops that are not served by the corresponding trip to oco. Thus, it is
still possible to use such a trip as long as we do not visit stops that are not
served any more. Otherwise, we simply use the next trip of the line which one
would also do in reality.

One vehicle overtakes another. In some rare cases, a vehicle is greatly delayed
and the succeeding vehicle of the same line [overtakes it. This usually hap-
pens only with buses. Such a situation violates the FIFO property, because
there exists stops d, t on [such that taking a later dit-trip results in an earlier
arrival at t. Since we assume that we always take the first arriving vehicle, it
might be that the recommended journey is not optimal. However, this is not
a problem from the user’s perspective because in reality passengers have no
knowledge that such a situation will occur and will therefore simply board the
first arriving vehicle (instead of waiting for the next one).

4.3 Other Considerations

Repeated use of a single line. As we discussed earlier, it may be necessary to
use multiple lines of the same label for a single journey (e.g., when the forward
and backward lines differ). In fact, we may want to use a single line repeatedly,
as Figure 4 shows: Imagine that there is an express line l¢zpress With very few
stops, that stops only in significant places of the city and there is also a slow
line I 0., that serves a similar trajectory, but stops more often. Then, to get
from an “unimportant” stop b to an “unimportant” point m, one possibility is
to take the slow line for the entire journey. However, it may be more efficient
to start with the slow line, and as soon as it is possible (at stop e), change
to the express line and then change back to the slow line (at j) only to reach
stop m (which is not on the express line). On the other hand, every transfer
from a line to another increases the risk of missing the next connection due to
delays in the network. Thus, it is an interesting problem, to detect and decide
whether or not the repeated use of the same line or label is justified, necessary,
or desired.

However, certain observations can be made. In particular, transferring from
a line [to the very same line immediately afterwards, can hardly result in any
benefit. Similarly, solutions containing immediate transfers to the same line in
the opposite direction (that serves the exact same stops, but in the opposite
order) can also be discarded.

Nearby stations. Some of the larger stations, where many lines meet, are some-
times split into several stops that are very close to each other, but have slightly
different names. The question is whether these stops should be considered to-
gether as one station, or not. The argument towards joining would be the fact
that one may want to use such compound station as a transfer station. An
argument against would be that even though the stops are relatively close to
each other, it may not be easy to find them for a person who does not know
the area. Thus, it is not clear how much time would one need on such a trans-
fer. Multimodal solution (adding walking arcs) may help to solve the problem,
however, it remains difficult to set the minimum transfer times so that the
non-local people have enough time to find the right stop, but without creat-
ing too much slack time for the people familiar with the area. Furthermore,
people with reduced mobility may prefer to avoid transfers between the stops
in a compound station completely.

5 Conclusion

We discussed a model for urban public transportation networks that facilitates
the search for robust journeys. We described some of the challenges that arise
from real-world network and delay information, and we discussed their impact
on the model.

The fact that some of the trajectories are realised only very rarely has
negative consequences on the robustness. We believe that unifying the lines
on parts where they serve the same sequence of stops, would lead to a better
overall frequencies of the lines and thus to more robust solutions. Then, the
recommendation to the user could be in the form “First, take I; or 5 in
the direction D and change to l4 at stop a.” It is not clear how to do this
algorithmically in a concise and systematic way, and we plan to consider this
issue in a further research.

References

Bast H, Carlsson E, Eigenwillig A, Geisberger R, Harrelson C, Raychev V,
Viger F (2010) Fast routing in very large public transportation networks
using transfer patterns. In: ESA, pp 290-301

Bauer R, Delling D, Wagner D (2011) Experimental study of speed up tech-
niques for timetable information systems. Networks 57(1):38-52

Bohmova K, Mihaldk M, Proger T, Srdmek R, Widmayer P (2013) Robust
routing in urban public transportation: How to find reliable journeys based
on past observations. In: ATMOS, pp 27-41

Boéhmové K, Mihaldk M, Neubert P, Proger T (2014a) Robust routing in urban
public transportation: Evaluating strategies that learn from the past. Tech.
Rep. eCompass-TR-057, eCompass

Bohmova K, Mihaldk M, Proger T, Sacomoto G, Sagot MF (2014b) Computing
and listing st-paths in public transportation networks. Tech. Rep. eCompass-
TR-056, eCompass

Boyan J, Mitzenmacher M (2001) Improved results for route planning in
stochastic transportation. In: SODA, pp 895-902

Brodal GS, Jacob R (2004) Time-dependent networks as models to achieve fast
exact time-table queries. Electronic Notes in Theoretical Computer Science
92:3-15

Buhmann JM, Mihaldk M, Srdmek R, Widmayer P (2013) Robust optimiza-
tion in the presence of uncertainty. In: ITCS, pp 505-514

Delling D, Pajor T, Wagner D (2009) Engineering time-expanded graphs for
faster timetable information. In: Robust and Online Large-Scale Optimiza-
tion, Springer, pp 182-206

Delling D, Pajor T, Werneck RF (2012) Round-based public transit routing.
In: ALENEX, pp 130-140

Dibbelt J, Pajor T, Strasser B, Wagner D (2013) Intriguingly simple and fast
transit routing. In: SEA, pp 43-54

Disser Y, Miiller-Hannemann M, Schnee M (2008) Multi-criteria shortest paths
in time-dependent train networks. In: WEA, pp 347-361

Firmani D, Italiano GF, Laura L, Santaroni F, et al (2013) Is timetabling
routing always reliable for public transportl. In: ATMOS, pp 1526

Frank H (1969) Shortest paths in probabilistic graphs. Operations Research
17(4):583-599

Goerigk M, Knoth M, Miller-Hannemann M, Schmidt M, Schobel A (2011)
The price of robustness in timetable information. In: ATMOS, pp 76-87

Miiller-Hannemann M, Schnee M (2009) Efficient timetable information in
the presence of delays. In: Robust and Online Large-Scale Optimization,
Springer, pp 249-272

Miiller-Hannemann M, Weihe K (2001) Pareto shortest paths is often feasible
in practice. In: WAE, pp 185-197

Miiller-Hannemann M, Schulz F, Wagner D, Zaroliagis C (2007) Timetable
information: Models and algorithms. In: Algorithmic Methods for Railway
Optimization, Springer, pp 67-90

Nachtigall K (1995) Time depending shortest-path problems with applications
to railway networks. European Journal of Operational Research 83(1):154—
166

Nikolova E, Kelner JA, Brand M, Mitzenmacher M (2006) Stochastic shortest
paths via quasi-convex maximization. In: ESA, pp 552-563

Orda A, Rom R (1990) Shortest-path and minimum-delay algorithms in net-
works with time-dependent edge-length. Journal of the ACM 37(3):607-625

Orda A, Rom R (1991) Minimum weight paths in time-dependent networks.
Networks 21(3):295-319

Pallottino S, Scutella MG (1998) Shortest path algorithms in transporta-
tion models: classical and innovative aspects. In: Equilibrium and advanced
transportation modelling, vol 245, Springer, p 281

Pyrga E, Schulz F, Wagner D, Zaroliagis C (2008) Efficient models for
timetable information in public transportation systems. ACM Journal of
Experimental Algorithmics 12:2—4

Schulz F, Wagner D, Zaroliagis C (2002) Using multi-level graphs for timetable
information in railway systems. In: ALENEX, pp 43-59

