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Abstract The Dial-a-Ride Problem (DARP) is an operation research problem which 

models a standard demand responsive transport system. This research considers one 

important feature: the transfers. We solve the Dial-a-Ride Problem with Transfers 

(DARPT) by a Monte Carlo procedure with a greedy insertion algorithm based on 

constraint propagation of the main time constraints (time windows, maximum ride 

times, maximum route times and time constraints related to the transfers).   
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1 Introduction 
 

The Dial-A-Ride Problem (DARP) is an operation research model for on-demand 

transportation. This system allows elderly and disabled people to move a short 

distance providing ride requests from an origin to a destination. These demands 

include hard time constraints (maximum ride times and time windows), while the 

system must fulfil the maximum route times and capacity constraints related to the 

fleet of vehicles.   

The latest evolution in transportation could enable on-demand transportation 

systems to be more widely and commonly used. The technologies like geo-

localization, mobile communication, connected cars and autonomous cars indeed 

provide new services for a more efficient system in terms of costs and quality of 

service. This evolution could explain why the DARP is experiencing a resurgence in 

the operation research literature since the last decade.  

Laporte et al. (2007) gives different ways to model the DARP with ILP. However, 

the complexity of the problem (NP-Hard) and the responsiveness expected for this 

type of system (there are short time intervals between the transmission of the 



 

 

 

demands and the rides) forces the problem to be handled through heuristic 

techniques. One of the main research papers on the DARP is Cordeau et al. (2003). 

They developed an efficient metaheuristic based on the Tabu Search to solve 

randomly generated instances which contain between 24 and 144 requests. Dynamic 

Programming (Psaraftis (1983)) and Variable Neighborhood Search (Healy et al. 

(1995), Parragh et al. (2010)]) are also good techniques to deal with the static 

problem.  

Algorithms should be designed in order to be easily adapted to a dynamic context 

and a flow of uncertain demands. Madsen et al. (1995) and Psaraftis et al. (1986) 

proposed such an algorithm which is the most widely used for the dynamic DARP: 

an insertion heuristic.  

The problem studied in this research allows the vehicles to satisfy a demand with 

transfers (or “transshipment”). This problem is named the Dial-A-Ride Problem 

with Transfers (DARPT). Masson et al. (2014) established its formulation for the 

first time. Here, the locations of the transfer nodes are static. Indeed, the transfer 

points could be either an origin node or a destination of any demand. 

We may refer to the Pickup and Delivery Problem with Transfers (PDPT) for a 

larger state of the art. For some exacts methods, we may refer to the Cortes et al. 

(2010), Kerivin (2008) and Nakao et al. (2012). However, as stated previously, the 

exact methods are not well adapted to the DARP (and thus also to the DARPT), 

only approximate methods are able to solve the problem in time. In this context, 

Masson et al. (2013) develops a VNS and solves big instances with almost 200 

requests. Shang et al. (1996) proposes an insertion heuristic where each pick-up and 

delivery nodes could be a transfer point. The transshipments are only allowed for 

the demands which couldn’t be inserted. This algorithm is adapted to the dynamic 

case by Thangiah et al. (2007). 

In this paper, we are solving the DARP and the DARPT by two randomized 

insertion heuristics into a Monte Carlo Process based on Deleplanque et al. (2013). 

We optimize an objective function with a mixed QoS/Economical Cost performance 

criterion. The validity of each insertion is mainly tested by the propagation of time 

constraints. The precedence constraints due to the transfers are included in this 

process. Their locations are located dynamically according to the shortest path 

joining the routes of the two vehicles involved. In the next sections, we present 

models of the DARP and the DARPT. Then, we describe and test our heuristics 

which propagate the time constraints for both problems.  

2. The DARP: model and framework 

2.1 The general Dial-a-Ride Problem 



 

 

 

A Dial a Ride problem instance is essentially defined by a vehicle fleet VH, a transit 

network G = (V, E). The graph contains a node Depot, and a Demand set D = (Di, i 

 I). Any demand Di is defined as a 6-uple Di = (oi, di, i, F(oi), F(di), Qi) such that: 

- oiV is the origin node of the demand Di,  

- diV is the destination node of the demand Di, 

- i ≥ 0 is an upper (transit) bound on the time of demand Di’s processing, 

- F(oi) is a time window related to the time Di starts being processed, F(di) 

is a time window related to the time Di ends being processed, 

- Qi is a description of the load related to Di. 

Dealing with such an instance means planning the handling demands of D, by the 

fleet VH, while taking into account the constraints which derive from the technical 

characteristics of the network G, of the vehicle fleet VH, the demands of D, and 

while optimizing some performance criteria. The objective is usually a mix of an 

economical cost (point of view of the fleet manager) and of QoS criteria (point of 

view of the users). This very general problem may be specialized. It depends on the 

structure of the fleet VH and on the way this fleet is allowed to answer various 

demands of D. Temporal constraints related to the time windows F(oi), F(di), i  I, 

and to the transit bounds i, i  I, may be more and less tight.  

The problem may have to be handled according to a dynamic context, (demands are 

not known in advance and must be processed “online”). In such a case, one must 

take into account the way the system is supervised and the way its components 

communicate with the users. Conversely, it may be set in a static context where all 

data are known in advance. In this case, eventual divergences between the data 

which were used during the planning phases, and the actual situation the system has 

to face, put what is called robustness at stake.    

Finally, one may have to tackle additional constraints, such that cumulative 

constraints involving human, technical or financial mutualized renewable or non-

renewable resources. In such a case, one may thing into linking the reduced problem 

with the RCPSP (Resource Constrained Project Scheduling Problem) framework. 

Throughout this work, we deal with homogeneous fleets and therefore limit 

ourselves to static points of view. Still, we do not intend to restrict ourselves to 

Standard Dial a Ride: so, we pay special attention to cases when temporal 

constraints are tight, and handle the case when the transfers are allowed. 

2.2 The Standard Case Framework 

The general notations of sequences and algorithms are described as follows. In any 

algorithmic description, we use the symbol ← in order to denote the value 

assignment operator: x ← , means that the variable x receives the value . Thus, 

we only use the symbol = as a comparator. For any sequence (or list)  whose 

elements belong to some set Z, we set First() the first element of  and Last() is 

the last element of . For any z in , Succ(, z) gives the successor of z in  and 

Pred(, z) gives the predecessor of z in the route . For any z, z’ in , we use z << 

z’ to denote that z is located before z’ in  and z<<
=
 z’ if z << z’ or z = z’. 

We do not need to consider the whole transit network G = (V, E). We may restrict 

ourselves to the nodes which are either the origin or the destination of some 



 

 

 

demand, while considering that any vehicle which visits two such nodes in a 

consecutive way does it according to a shortest path strategy. This leads us to 

consider the node set {Depot, oi, di, i  I} as made with pairwise distinct nodes, and 

provided with some distance function DIST, which to any pair x, y in {Depot, oi, di, 

i  I}, corresponds to the shortest path distance from x to y in the transit network G.     

Additionally, we also split the Depot node according to its arrival or departure status 

and to the various vehicles of the fleet VH. We also consider the input data of a 

Standard Dial a Ride instance as defined by the set {1..K = Card(VH)} of the 

vehicles of the homogenous fleet VH, the common capacity CAP of a vehicle in VH, 

the node set X = {DepotD(k), DepotA(k), k = 1..K}  {oi, di, i  I} and the distance 

matrix DIST. For any x, y in X, DIST(x, y) is equal to the length, in the sense of the 

length function l, of a shortest path which connects x to y in G: we suppose that 

DIST, satisfies the triangle inequality. 

For any node x in X, the following characteristics also apply:  

- its status Status(x): Origin, Destination, DepotA, Depot D. We set Depot = 

DepotD  DepotA; 

- its demand index: Dem(x) = i if x = oi or di, and Dem(x) = 0 else; 

- its vehicle index VI: VI(DepotA(k)) = VI(DepotD(k)) = k and VI(x) = 

Undefined for any other node x  X; 

- its load CH(x):  if Status(x)  Depot then CH(x) = 0; if Status(x) = Origin, 

then CH(x) = Qi; and if Status(x) = Destination, then CH(x) = -Qi; 

- its twin node Twin(x): if x = DepotA(k) then Twin(x) = DepotD(k) and 

conversely; if x = oi then Twin(x) = di and conversely; 

- its time window F(x): for any k = 1..K, F(DepotA(k)) = [0, + [ = 

F(DepotD(k)). Also, we suppose that any F(x), x  X, is an interval, which 

may be written F(x) = [F.min(x), F.max(x)];  

- its transit bound (x): if x = oi (di), then (x) = i, and (x) =  else.  is 

an upper bound which is imposed on the duration of any vehicle tour.   

The system works as follows: vehicle k  {1..K}, starts its journey from DepotD(k) 

at some time t(DepotD(k)) and ends it into DepotA(k) at some time t(DepotA(k)). It 

took in charge some subset D(k) = {Di, i  I(k)} of D. That means that for any i in 

I(k), vehicle k arrived in oi at time t(oi) F(oi), loaded the whole load Qi, and kept it 

until it arrived in di at time t(di) F(oi) and unloaded Qi, in such a way that t(di) - 

t(oi) ≤ i. Clearly, solving the Standard Dial a Ride instance related to this data (X, 

DIST, K, CAP) will mean computing the subsets D(k) = {Di, i  I(k)}, the routes 

followed by the vehicles and the time values t(x), x  X, in such a way that both 

economic performance and quality of service be the highest possible.  

 

Tours, Valid Tour and performance criteria 

In order to provide an accurate description of the output data of our standard Dial a 

Ride instance (X, DIST, K, CAP), we need to talk about tours and related time value 

sets. A tour  is a sequence of nodes of X, which is such that:  

- Status(First()) = DepotD; Status(End()) = DepotA;  

- VI(First()) = VI(End());  

- For any node x in , x ≠ First(), End(, Status(x)  Depot; 



 

 

 

- No node x  X appears twice in ; 

- For any node x = oi (resp. di) which appears in , the node Twin(x) is also 

in , and we have: x <<Twin(x) (resp. Twin(x) <<x). 

This tour  is load-valid iff: for any x in , x  First(), we have y\y << x CH(y)  ≤ 

CAP. Moreover, this tour  is time-valid iff it is possible to associate, with any node 

x in , some time value t(x), in such a way that:                                            (E1) 

- for any x in , x  Last(), t(Succ(, x)) ≥ t(x) + DIST(x, Succ(, x));   

- for any x in , t(Twin(x)) – t(x) ≤  (x) and for any x in , t(x) F(x). 

The tour  is said to be valid if it is both time-valid and load-valid. For any pair (, 

t) defined by some time-valid tour  and by some valid related time value set t, we 

may set Glob(, t) = t(End()) – t(First()): this quantity denotes the global 

duration of the tour  and Ride(, t) = x\Status(x)=Origin|Twin(x) - t(x)|: this other 

quantity may be viewed as a QoS criteria, and denotes the sum of the duration of the 

individual trips of the demanders which are taken in charge by tour . If A and B 

are two multi-criteria coefficients, we may define the performance criteria 

CostA,B(, t) as follows: CostA, B(, t) = A.Glob(, t)  + B.Ride(, t).  

So, let us suppose that we deduced from the data G = (V, E), VH = (K, CAP), D = 

(Di = (oi, di, i, F(oi), F(di), Qi), i  I), a 4-uple (X, DIST, K, CAP), and that we are 

also provided with 2 multi-criteria coefficients A and B ≥ 0. Then we see that 

solving the related Standard Dial a Ride Problem instance means computing: for 

any vehicle index k in 1..K, a valid tour T(k) and a time value set t = {t(x), x X} in 

such a way that: the restriction of t to any T(k), k = 1..K, defines a valid time value 

set related to T(k), the tour set T = {T(k), k = 1..K} induces a partition of  X, and the 

quantity PerfA, B(T, t) = k = 1..K CostA, B(T(k), t) is the smallest possible.  

3 Handling temporal constraints 

The algorithm described inside the next section will essentially be based upon the 

use of insertion techniques. Thus, we must be able to check in a fast way whether 

the insertion of some demand Di inside a tour  will maintain the validity of  , and 

to get an evaluation of the quality of this insertion. We are first going to define a 

package of constraint handling tools. 

3.1 Testing the load-validity and the Time-validity 

Checking the load validity on is straightforward. In order to be able to test the 

impact of the insertion of some demand into the tour  on the load validity of this 

tour, we associate, with any such a tour, the quantities C(, x), x  , defined by: for 

any x in , C(, x)  = y\y <<xor y = x CH(y).  Subsequently,  is load-valid iff for any x 

in , C(, x)  ≤ CAP.  

Checking the time validity of  according to a current time window set FS = {FS(x) 

= [FS.min(x), FS.max(x)], x  }, may be performed through propagation of the 

following inference rules Ri, i = 1..5 performed by the Propagate procedure and we 

deduce the proposition 1: 



 

 

 

- Rule R1: y = Succ(, x);   FS.min(x) + DIST(x, y) > FS.min(y) ╞ 

FS.min(y) ←FS.min(x) + DIST(x, y);  NFact ← y; 

- Rule R2: y = Succ(, x);  FS.max(y) - DIST(x, y) < FS.max(x) ╞ 

FS.max(x) ←FS.max(y) - DIST(x, y);  NFact ← x; 

- Rule R3: y = Twin(x);  x <<  y; FS.min(x) < FS.min(y) – (x) ╞ 

FS.min(x) ←FS.min(y) - (x);  NFact ← x; 

- Rule R4: y = Twin(x); x << y; FS.max(y) > FS.max(x) + (x) ╞ 

FS.max(y) ←FS.max(x) + (x) ;  NFact ← y; 

- Rule R5:  x  ; FS.min(x) > FS.max(x) ╞ Fail. 

 

Procedure Propagate 

Input: (: Tour, L: List of nodes, FS: Time windows related to the node set of ); 

Output: (Res: Boolean, FR: Time windows related to node set of ); 

Continue ← true;  

While L  Nil and Continue do 

z ← First(L); L ← Tail(L); 

For i = 1..5, compute all the pairs (x, y) which make possible an application of 

the rule Ri and which are such that x = z or y = z; 

For any such pair (x, y) do  

Apply the rule Ri;   

If NFact is not in L then insert NFact in L; 

If Fail then Continue ← false;  

Propagate ← (Continue, FS); 

 

Proposition 1. 

The tour  is time-valid according to the input time window set FS if and only if the 

Res component of the result of a call Propagate(FS, ) is equal to 1. In such a case, 

any valid time value set t related to and FS is such that: for any x in , t(x)  

FS(x).      

 

Proof. The part (only if) of the above equivalence is trivial, as well as the second 

part of the statement. As for the part (if), we only need to check that if we set, for 

any x in : FS(x) = [FS.min(x), FS.max(x)] and t(x) = FS.min(x); then we get a time 

value set t ={t(x), x   X()}which is compatible with  and FS. End-Proof. 

 

We denote by FP() the time window set which result from a call Propagate( 

L,F). FP() may be considered as the largest (in the inclusion sense) time window 

set which is included into F and which is stable under the rules Ri, i = 1..5, and is 

called the window reduction of F through .   

3.2 Evaluating a tour 

Let us consider now the tour , provided with the window reduction set FP(). We 

want to get some fast estimation of the best possible value CostA,B(, t) = A.Glob(, 



 

 

 

t) + B.Ride(, t), t Valid(). We design two ad hoc procedures EVAL1 and 

EVAL2. The EVAL1 procedure works in a greedy way, first by assigning the node 

First() its largest possible time value, and by next performing a Bellman process in 

order to assign every node x in  its smallest possible time value. The EVAL2 

procedure starts from a solution produced by EVAL1, and improves it by 

performing a sequence of local moves, each move involving a single value t(x), x  

. These procedures and the Proposition 2 are given below. 

 

Procedure EVAL1.               Input:(: Tour); Output: (Val: Number, : value set); 

For any x in , let us set set: [a(x), b(x)] = FP(); 

(First()) ←  b(First());  x ← First();  

While x  Last() do  

y < Succ(, x); (y) ← Sup(a(y), (x) + DIST(x, y)); 

x ← y; ← {(x), x }; Val ←CostA,B(, ); 

EVAL1← (Val, );  

 

Procedure EVAL2.               Input:(: Tour); Output: (Val: Number, : value set); 

For any x in , let us set: [a(x), b(x)] = FP(); 

For any x in  do (x) ←EVAL1(, FS).; Continue ← true; 

While Continue do 

Search for x in  such that one of the two statements (E2) or (E3) below is true:  

o (E2): (x< 0)  (Status(x)  {Origin, DepotD})  ((x)  Inf(b(x), 

(Succ(, x) – DIST(x, Succ(, x))); 

o (E3): (x> 0)  (Status(x)  {Destination, DepotA})  ((x)  Sup(a(x), 

(Pred(, x) + DIST(Succ(, x)), x)); 

If Fail(Search) then Continue ← false;  

Else  

If (E2) then (x) ←Inf(b(x), (Succ(, x) – DIST(x, Succ(, x))); 

If (E3) then ((x) ←Sup(a(x), (Pred(, x) + DIST(Succ(, x)), x)); 

EVAL2← (Val =CostA,B(, )), );  

 

Proposition 2. 

Both EVAL1 and EVAL2 yield a time value set  which is compatible with  and F 

(with  and FP()). Besides, if B = 0, then EVAL1 yields an optimal value Val, that 

means yields the smallest possible value CostA,B(, ),  Valid(, F).  

 

Proof. As in the description of both procedures EVAL1 and EVAL2, we suppose 

that for any x in , the time window FP() may also be written FP() = [a(x), b(x)]. 

The first part of the above statement is trivial. In case B = 0, minimizing CostA,B(, 

) means minimizing (Last()) – (First()). We must deal with two cases: 

- 1. There exists x  First() such that: (x) = a(x), x <<
=
 y  <<Last(). 

For all y, we have: (Succ(, y)) – (y) =  DIST(y, Succ(, y));  

Then the stability of FP()(x) under the inference rule R3 allows us to 

deduce (Last()) = a(Last()), and the result since (First()) =  

b(First()).  



 

 

 

- 2. For any x in X(), x  Last(), we have (Succ(, x)) – (x) = DIST(x, 

Succ(, x)). 

Then the result comes in an immediate way. End-Proof. 

 

 being some valid tour, we denote by VAL1() and VAL2() the values 

respectively produced by the application of EVAL1 and EVAL2 to .  

4 An insertion algorithm for tightly constrained instances 

4.1 The insertion mechanism 

The algorithm works in a very natural way. Let  be some valid tour, let Di = (oi, di, 

i, F(oi), F(di), Qi) be some demand whose origin and destination nodes are not in , 

and let x, y be two nodes in , such that x <<
=
 y. Then we denote by INSERT(, x, 

y, i) the tour which is obtained by locating oi between x and Succ(, x) and locating 

di between y and Succ(, y). We say that the tour INSERT(, x, y, i) results from 

the insertion of demand Di into the tour  according to the insertion nodes x and y. 

The tour INSERT(, x, y, i) may not be valid. So, before anything else, we must 

detail the way the validity of this tour is likely to be tested.  

 

Testing the Load-Admissibility of INSERT(, x, y, i).  

We only need to check with a procedure Test-Load, that for any z in Segment(, x, 

y) = {z such that x  <<
=
 z  <<

=
 y} we have, C(, z) +  Qi ≤ CAP.  

 

Testing the Time-Admissibility of INSERT(, x, y, i).  

It should be sufficient perform a call Propagate(, {oi, di}, FP()), while using the 

list {oi, di} as a starting list. Still, such a call is likely to be time consuming. So, in 

order to make the testing process go faster, we introduce several intermediary tests 

which aim at interrupting the testing process in case non-feasibility. The first test 

Test-Node aims at checking the feasibility of the insertion of a node u, related to 

some load Q, between two consecutive node z and z’ of a given tour . It only 

provides us with a necessary condition for the feasibility of this insertion: 

 

Procedure Test-Node 

Input: (, z, z’: nodes in , u: node out , Q: load); Output:  Boolean 

Let us set, for any x in , [a(x), b(x)] = FP()(x); Let us set: [, ] = F(u); 

Test node ← (a(z) + DIST(z, u) ≤ )  ( + DIST(u, z’) ≤ b(z’))  (a(z) + DIST(z, 

u) + DIST(u, z’) ≤ b(z’))  (C(, z) + Q  ≤ CAP); 

 

The second test Test-Node1 (based on Test-Node) aims at checking the feasibility of 

the insertion of an origin u and a destination v nodes related to some load Q, 

between two consecutive nodes z and z’ of a given tour . So, testing the 

admissibility of a tour INSERT(, x, y, i) may be performed through the following 

procedure:  

 



 

 

 

Procedure Test-Insert 

Input: (, x, y, i); Output:  (Test: Boolean, Val: Number); 

If x  y then Test ← Test-Node(, x, Succ(, x), oi, Qi)  Test-Node(, y, Succ(, 

y), di, Qi); 

Else Test ← Test-Node1(, x, Succ(, x), oi, di, Qi); 

If Test = 1 then Test ← Test-Load(, x, y, i); 

If Test = 1 then (Test, F1) ← Propagate(, {oi, di}, FP(); 

If Test = 1 then Val ← EVAL1(INSERT(, x, y, i), F1).Val else Val ← Undefined; 

Test-Insert← (Test, Val – Val1());  

4.2 The insertion process 

So, this process takes as input the demand set D = (Di = (oi, di, i, F(oi), F(di), Qi), i 

 I), the 4-uple (X, DIST, K, CAP), and two multi-criteria coefficients A and B ≥ 0. 

The algorithm works in a greedy way through successive insertions of the various 

demands Di of the demand set D. The basic point is that, since we are concerned 

with tightly constrained time windows and transit bounds, we use, while designing 

the INSERTION algorithm, several constraint propagations tricks. Namely, any 

time we enter the main loop of this algorithm, we are provided with:  

- the set I1  I of the demands which have already been inserted; 

- current tours T(k), k = 1..K: for any such a tour T(k), we know the related 

time windows FP(T(k))(x), x  T(k), as well as the load values C(T(k), x), 

x  T(k), and the values VAL1(T(k)) and VAL2(T(k));  

- the knowledge, for any i in J = (I - I1) of the set FREE(i) of all the 4-uple 

(k, x, y, v), k = 1..K, x, y  T(k), v Q, such that a call Test-Insert(T(k), 

x, y, i) yields a result (1, v). We denote by N-FREE(i) the cardinality of the 

set V-FREE(i) = {k = 1..K, such that there exists a 4-uple (k, x, y, v) in 

FREE(i)}. N-FREE(i) is the number of vehicles available for Di.   

Then, the INSERTION algorithm works according to the following scheme (1-4): 

1. The process selects a demand i0 in J, among those demands which are the most 

constrained: i0 is such that N-FREE(i0) and Card(Free(i0)) are small.                   (E4)                                                                                                                                   

2. Then, it picks up (k0, x0, y0, v0) in FREE(i0) which corresponds to one of the 

smallest values EVAL2(INSERT(T(k), x, y, i0)).Val – VAL2(T(k)). More 

specifically, it builds the list L-Candidate of the N1 4-uples (k, x, y, v) in FREE(i0) 

with the smallest value v. For any such a 4-uple, it computes the value w = 

EVAL2(INSERT(T(k), x, y, i0)).Val – VAL2(T(k)), and it orders L-Candidate 

according to increasing values w.  Then it randomly chooses (k0, x0, y0, v0) among 

those N2 ≤ N1 first 4-uples in L-Candidate.                 (E5) 

3. It inserts the demand Di0 into T(k0) according to the insertion nodes x0, y0, which 

means that it replaces T(k0) by INSERT(T(k0), x0, y0, i0). Then, it defines, for any i 

 J, the set (i) as being the set of all pairs (x, y) such that there exists some 4-uple  

(k0, x’, y’, v) in FREE(i), which satisfies:                                                              (E6)                                                                                                  

- (x’ = x) or ((x’ = x0) and x’ = Pred(T(k0), x)) or ((x’ = x0= y0) and (x’ = 

Pred(Pred(T(k0), x)))); 

- (y’ = y) or ((y’ = y0) and y’ = Pred(T(k0), y)) or ((y’ = x0 = y0) and (y’ = 

Pred(Pred(T(k0), y))))                     



 

 

 

4. Finally, it performs, for any pair (x, y) in (i), a call Test-Insert(T(k0), x, y, i), 

and it updates FREE(i) and N-FREE(i) consequently.  

 

Procedure INSERTION 

Input: (N1, N2, D, (X, DIST, K, CAP), A and B); 

Output: (T, t, Perf: induced PerfA,B(T, t) value, Reject: rejected demand set);     

For any k = 1..K do  

T(k) ← {DepotD(k), DepotA(k)}; t(DepotD(k)) = t(DepotA(k)) ← 0;   

I1←Nil; J ← I; Reject← Nil; 

For any i  J do  

FREE(i) ← all the possible 4-uple (k, x, y, v), k = 1..K, x, y {DepotD(k), 

DepotA(k)}, x <<T(k)
=
  y, v = EVAL2({DepotD(k), oi, di, DepotA(k)}).Val; N-

FREE(i) ← K; 

While J  Nil do    

Pick up some demand i0 in J as in (E4); Remove i0 from J;    

If FREE(i0) = Nil then Reject ←Reject  {i0} 

Else 

Derive from FREE(i0) the L-Candidate list and Pick up (k0, x0, y0, v0) in L-

Candidate as in (E5); 

T(k0) ← INSERT(T(k0), x0, y0, i0); ← EVAL2(T(k0)).; Insert i0into I1; 

For any x in T(k0) do t(x) ←(x);   

For any i  J do 

(i) ← {all pairs (x, y) such that there exists some 4-uple (k0, x’, y’, v) 

in FREE(i), which satisfies (E6) 

For any pair (x, y) in (i) do  

(Test, Val) ←Test-Insert(T(k0), x, y, i); 

Remove (k0, x, y, v) from FREE(i) in case such a 4-uple exists 

and update N-FREE(i) consequently; 

If Test = 1 then insert (k0, x, y, Val) into FREE(i) and update N-

FREE(i) consequently;  

Perf ←PerfA,B(T, t); 

INSERTION← (T, t, Perf, Reject); 

 

Since the above instruction may be written in a non-deterministic way, the whole 

INSERTION algorithm becomes non-deterministic inside some MONTE-CARLO 

framework. This process keeps the best result (the pair (T, t)) such that |Reject| is the 

smallest possible, and which is such that, among those pairs which minimize |Reject|, 

it yields the best PerfA,B(T, t) value.  

5 Dial a ride problem with transfers 

In this section, we deal with the DARPT case when transfers are allowed. meaning 

then the load Qi related to some demand Di = (oi, di, i, F(oi), F(di), Qi). Di may be 

handled in several successive steps, each step involving some vehicle k  K, which 

makes the load Qi go from some origin or relay node x to some relay or destination 

node y. Transfers means here that, while the load Qi is always handled as a whole, 



 

 

 

the route it follows may be split into several sub-routes. All these sub-routes being 

taken in charge by distinct vehicles. We are going to restrict ourselves here to a case 

when no more than two vehicles are allowed to perform such a transportation task. 

5.1 The insertion mechanism 

In case a given load Qi has to be successively handled by two vehicles k and k’, the 

set X is likely not to be sufficient to describe the route of the vehicles. The two 

related routes T(k), T(k’) will have to intersect and exchange load Qi in a relay node 

z, which will be neither an origin node oj nor a destination node dj. Those relay 

nodes are not known in advance: so, we try to handle those exchange nodes in an 

implicit way and to deal with them in a dynamic way.  

 

INPUT for the DARPT - Extending the node set X into an implicit node set Z.  

We first need to extend X in order to create the relay nodes. Since we want to 

handle these relay nodes dynamically, we suppose that X may be embedded into 

some (eventually infinite) implicit node set Z such that X  Z: Z may be a large 

scale, eventually infinite, set. For any pair of nodes z, z’ in Z, we suppose that we 

are able to compute some distance Dist(z, z’), in such a way that for any x, x’ in X, 

Dist(x, x’) = DIST(x, x’).  

The input of the Dial a Ride problem with transfers (DARPT) is going to be defined 

by a transit network G = (V, E), a vehicle fleet VH = (K, CAP), a demand set  D = 

(Di = (oi, di, i, F(oi), F(di), Qi), i  I), a 4-uple (X, DIST, K, CAP), and with 2 

multi-criteria coefficients A and B ≥ 0, augmented with some node set Z. In 

addition, since we are going to handle the node set Z a dynamic way, we should be 

able to create new active nodes from existing ones. So, we suppose that we are 

provided with a function Midst, which, from any pair of nodes z, z’ in Z, compute a 

new node z” = Midst(z, z’) in Z, in such a way that Dist(z, z”) and Dist(z”, z) are no 

larger than some fraction .Dist(z, z’), with < 1. 

 

Building Relay Nodes: the Implicit Set Z*. 

Additional nodes in Z – X are going to be used as relay nodes. Any such active relay 

node will appear in two tours, once as an emitter node and once as a receiver node. 

Since we would like to continue with the structure of the model that we have been 

using for the standard version of the Dial a Ride problem, we also would like 

distinct nodes. In order to do it, we define the implicit node set Z* as follows:  

- Z* = X   {(z, i, -1), (z, i, 1), i  I, z   Z}: the node (z, i, -1) will appear 

as emitter node for load Qi inside some tour T(k), which means that load Qi 

is first going transported from oi to z by vehicle k, and next from z to di by 

some other vehicle k’, k ≠ k’. It comes that node (z, i, 1) will appear in a 

symmetric way in tour T(k’). 

- for any node z in Z, we set: Node(z, i, -1) = Node(z, i, +1) = z; 

- for any node x in X we set: Node(x) = x. 

We extend Status, Twin, Dem, CH, , and F by setting, for every z Z, i  I: 

- Status(z, i, -1) = Out-Reload,  Status(z, i, +1) = In-Reload; 

- Twin(z, i, +1) = {(z, i, - 1),  Twin(z, i, -1) = {(z, i, + 1); 



 

 

 

- Dem(z, i, +1) = Dem(z, i, -1) = i; 

- CH(z, i, -1) =  - Qi,  Node(z, i, +1) = Qi; 

- (z, i, -1) =   (z, i, +1) = + ∞; F(z, i, -1) =  F(z, i, +1) = [0, + ∞[. 

Clearly, the function Dist may be also extended in a canonical way to Z*.Z*. 

 

Tours, Valid Tours, Tour Family and Covering Tour Family.  

A tour, in the sense of the DARPT, becomes a sequence  of nodes of Z*, which is 

such that: Status(Start()) = DepotD, Status(End()) = DepotA, VI(Start()) = 

VI(End()), for any node x in : x ≠ Start(), x ≠ End(, Status(x)  Depot, no 

node x  Z* appears twice in , and for any demand i  I, one of the configuration 

below occurs, which excludes the others: 

- oi and di appear in , oi << di, and no node (z, i, ),  {-1, 1} is in ;   

- none among oi, di, (z, i, ),  {-1, 1}, appears in ; 

- oi and (z, i, -1) are in , such that oi << (z, i, -1), and none among di, (z, i, 

+ 1), is in ; 

- di and (z, i, +1) are in , such that (z, i, +1) << di, and none among oi, (z, i, 

- 1), is in ; 

As stated in the DARP sections, we say that a tour  is load-valid iff: for any x in , 

x  Start(), we have y\y <<xCH(y)  ≤ CAP  and such a tour  is time-valid iff it is 

possible to associate, with any node x in , a time value (x) ≥ 0, in such a way that:   

- for any x in , x  Last(), (Succ(, x)) ≥ (x) + Dist(x, Succ(, x));   

- for any x in \ Status(x){Out (In) -Reload},(Twin(x)) – (x) ≤  (z); 

- for any x in , (x) F(x). 

In case exists, it is called a valid time value set related to . In case the tour  is 

both time-valid and load-valid, we say that it is valid. Clearly, a feasible solution of 

our Dial a Ride with transfers problem cannot be defined as a family T = {T(k), k = 

1..K} of pairwise disjoint valid tours. We must link tours which involve Out-Reload 

and In-reload nodes related to a same demand. In order to do it, we consider some 

subset J of the Demand Index set I, some tour collection T = {T(1)..T(K)}, and we 

say that T defines a covering collection for J if the tours T(1)..T(K) are pair-wise 

disjoint valid tours, their union contains the whole set {oi, di, i  J} (they contain no 

node x such that Dem(x)   I – J), and every tour T(k), k = 1..K, starts with the node 

DepotD(k) and ends with the node DepotA(k). The nodes (z, i, ), z  Z, i  J,  

{-1, 1} which appear in k = 1..K T(k) define the active relay node set of the tour 

collection T. We denote it by ACT(T). The tour collection T = {T(k), k = 1..K} is a 

valid covering collection for J iff : 

- for every k = 1..K, the tour T(k) is load-valid; 

- the collection T = {T(k), k = 1..K} is a covering collection for J; 

- there exists some time value set t = {t(x), x k = 1..K T(k)} such that: for 

any k = 1..K, the restriction of t to the nodes of T(k) defines a valid time 

value set related to T(k); and, for every active Out-Reload node x in 

ACT(T), we have t(Twin(x)) ≥ t(x); 

In case such a time value set t exists, we say that T is time-valid and t is called a 

valid time value set related to T. 

 

5.2 Handling the relay nodes: an insertion mechanism 



 

 

 

  

Once again, we want to deal with the above model by successively inserting the 

demands Di, i  I, into a tour collection T, until this tour collection defines a valid 

covering collection for I.  In order to do it, we first need to explain which kind of 

insertion mechanisms we intend to use. We are going to use two insertion operators: 

INSERT and INSERT2. 

The INSERT operator works as in section 4.1: k being some vehicle index, x, y 

being two nodes in T(k) such that x <<
=

T(k) y, i being some demand index which is 

such that neither oi nor di is in T(k), INSERT(T(k), x, y, i) denotes the tour which is 

obtained through insertion of oi between x and Succ(T(k), x) in T(k) and by 

insertion of di between y and Succ(T(k), y) in T(k). 

The INSERT2 operator works by inserting demand Di into two distinct tours: k, k’ 

being two distinct vehicle indices, x, y being two nodes in T(k) such that x <<
=

T(k) y, 

x’, y’ being two nodes in T(k’) such that x’ <<
=

T(k’) y’, z being some relay node in Z, 

INSERT2(i, k, k’, x, y, x’, y’, z) denotes a pair of tours(INSERT2(i, k, k’, x, y, x’, 

y’, z).First, INSERT2(i, k, k’, x, y, x’, y’, z).Second) in such a way that:  

- INSERT2(i, k, k’, x, y, x’, y’, z).First is the tour which is obtained through 

insertion of oi between x and Succ(T(k), x) in T(k) and by insertion of (z, i, 

-1) between y and Succ(T(k), y) in T(k); 

- INSERT2(i, k, k’, x, y, x’, y’, z).Second is the tour which is obtained 

through insertion of (z, i, 1) between x’ and Succ(T(k’), x’) in T(k’) and by 

insertion of di between y’ and Succ(T(k), y’) in T(k’). 

 

5.3 A general insertion scheme 

We notice that the two operators which we described above have quite different 

impacts on the way a global insertion schema is going to work. While testing the 

feasibility of an application of the INSERT operator is a local task, which only 

involve dealing with the T(k) tour, testing the feasibility of the INSERT2 operator is 

likely to involve more than the T(k), T(k’) tours. By the same way, handling the 

FREE(i) is going to become more complicated once we start introducing relay nodes 

and linking constraints. For this reason, we decompose the resolution process into 

two steps (1-2): 

1. We only use the INSERT operator, while proceeding as in the INSERTION 

procedure of section 4.2. Since we would like to use transfers and the related  

INSERT2 operator in order to make the whole tour system more efficient, we 

perform this first step while using stronger transit bounds i, i  I, meaning that the 

riding times of the demanders improves; 

2. The first step is likely to yield rejected demands, because of the stronger transit. 

So, the second step deals with those rejected demands while only using the 

INSERT2 operator.   

 

The whole process may be summarized as follows:  

 

Dial-a-Ride with Transfers Insertion Algorithmic Scheme:  

Continue ← true; 

While Continue do 



 

 

 

Compute transit bounds *i, i  I, such that for any i  I, *i ≤ i;              (E7) 

1 - Apply the INSERTION(N1, N2) procedure of section 4.2, while replacing, 

for any i  I, i by *i; 

Let Reject the resulting rejected demand index set, T the resulting valid covering 

collection associated with I1 = I – Reject,  and t the related valid time value set; 

2 -: we keep on replacing, for any i  I, i by *i; 

J ←Reject; Reject ← Nil; Initialize the sets FREE2(i), i  J;  

While J  Nil do    

Picks up some demand i0 in J; Remove i0 from J;  

If FREE2(i0) = Nil then Reject←Reject  {i0}; 

Else 

Derive from FREE2(i0) a Weak-L-Candidate list of 7-uples;              (E8) 

Derive from Weak-L-Candidate a L-Candidate list, made with those 7-uples 

which are such that the replacement of (T(k1), T(k2)) by INSERT2(i0, k1, 

k2, x1, y1, x2, y2 , z) is going to maintain the validity of T;              (E9) 

If L-Candidate = Nil then Reject←Reject  {i0} 

Else  

Picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate;                                                               

Create two new active nodes related to (z, i0, -1) and (z, i0, 1);    

(T(k1), T(k2)) ←INSERT2(i0, k1, k2, x1, y1, x2, y2 , z); Update t; 

Update the time windows F(x), x  k = 1..KT(k);            (E10) 

Update the sets FREE2(i), i  J; Insert i0 into I1; 

Update Continue; 

Keep the best result (T, t, Reject, PerfA,B(T, t)) obtained during this process. 

 

Update- imposes stronger transit bounds, creating a need for transfers in order to 

obtained better PerfA,B(T, t) values, we specify (E7) with this procedure as follows:  

 

Function Update-Input: ( : Number in Q, > 1); Output: (*i, i  I); 

For i in I do: If I > . DIST(oi, di) then *I ← DIST(oi, di) else  *i←*i;  

 

5.4 The sets FREE2 and the construction of the weak-L-Candidate list 

For any i  J, the set FREE2-o(i) will be made with the pair (k, z) such that:   

- the active node z is in T(k), different from Last(T(z)), [a(z), b(z)] denotes 

the time window FP(T)(z), z’ gives Succ(T(k), z), and [, ] denotes the 

time window F(oi); 

- (a(z) + DIST(z, oi) ≤ )  ( + DIST(oi, z’) ≤ b(z’))  (a(z) + DIST(z, oi) + 

DIST(oi, z’) ≤ b(z’))  (C(, z) + Qi  ≤ CAP). 

In the same way, for any i   J, the set FREE2-d(i) will be made with such that:   

- (a(z) + DIST(z, di) ≤ )  ( + DIST(di, z’) ≤ b(z’))  (a(z) + DIST(z, di) + 

DIST(di, z’) ≤ b(z’))  (C(, z) + Qi  ≤ CAP). 

So, for any (x1, k1) in FREE1-o(i0), and for any (y2, k2) in FREE2-d(i0), k1 ≠ k2, we 

compute a relay node z through the following process summarized in 2 steps. 



 

 

 

1 – First, let us recall that the function Midst, which, from any pair of nodes z, z’ in 

the node set Z, computes a new node z” = Midst(z, z’) in Z, in such a way that 

Dist(z, z”) and Dist(z”, z) are no larger than some fraction .Dist(z, z’), with < 1; 

2 - For any node y in T(k1), we denote by Close(y, k2)the first (in the sense of the 

relation <<T(k2) ) element x in T(k1) such that t(x) ≥ t(y). Then, we apply the 

following Exchange function below.  

 

Function Exchange. 

Input: (x1, k1, y2, k2); Output: (y in T(k1), x in T(k2), z : relay node); 

Compute y in T(k1), such that: 

 x1<<T(k) z, Close(y, k2) <<
=

T(k2) y2, and DIST(y, Close(y, k2) is the smallest 

possible ; 

If y is undefined then Exchange ← Undefined 

Else Exchange← (y, Pred(Close(y, k2)), Midst(z, U(z, l))); 

 

Exchange(x1, k1, y2, k2) provides us with the parameters y1, x2, z, which would 

eventually allow us to perform the (T(k1), T(k2)) ← INSERT2(i0, k1, k2, x1, y1, x2, y2 , 

z) instruction. So, the Weak-L-Candidate list (E8) will be defined by those 7-uple (k1, 

k2, x1, y1, x2, y2, z) which we obtain this way, and the L-Candidate list will defined by 

those among those 7-uple which are such the validity of the tour collection T will be 

preserved through application of the INSERT2 operator.   

 

5.5 Evaluate and testing the validity of an application of the INSERT2 operator 

The process needs to check the validity of the tour collection T, in case we apply it 

some INSERT2 process. So, let us consider that we are provided with I1 I, with a 

valid covering collection associated with I1, with i0   I - I1, with a 7-uple (k1, k2, x1, 

y1,x2, y2, z) as above, and that we intend to perform INSERT2(k1, k2, x1, y1,x2, y2, z). 

Clearly, checking the load validity of the two resulting tours T(k1) and T(k2) can be 

easily done through application of the following procedure:  

 

Procedure Test-Load2.            Input: (i0, k1, k2, x1, y1, x2, y2, z); Output: Boolean; 

Test-Load2 ← {For any z in Segment(T(k1), x1, y1), C(, z) +  Qi0  ≤ CAP}  {For 

any z in Segment(T(k2), x2, y2), C(, z) +  Qi0  ≤ CAP} 

 

For testing the time validity, we need to take into account the whole collection T. 

Let us suppose that we just computed a copy  of the tour collection which would 

result from the application of INSERT2. We also extend the DIST matrix in order to 

take into account the new nodes (z, i0, -1) and (z, i0, 1). We denote by FS(x), x  

ACT() = k = 1..K (k) the current time windows which appear in . We propagate 

the same 5 rules as in section 3.2 augmented with the following rule R6 and R7:   

- Rule R6: y = Twin(x); Status(x) = Out-Reload; FS.min(x)  >FS.min(y) ╞ 

FS.min(y) ←FS.min(x); NFact ← y; 

- Rule R7: y = Twin(x); Status(x) = Out-Reload; FS.max(x)  >FS.max(y) ╞ 

FS.max(x) ←FS.max(y); NFact ← x; 



 

 

 

So, checking the time validity of  according to a current time window set FS = 

{FS(x) = [FS.min(x), FS.max(x)], x  ACT() = k = 1..K(k)} is performed by 

application of a procedure Propagate2 based on Propagate. We may consider, in 

case Res = 1, that the resulting time window set FR = {FR(x), x  ACT()}, is 

completely determined by  and by the original time window set F. So, we denote it 

by FP(), and we consider it as attached to any time-valid tour collection . Like in 

section 3, the tour collection  is time valid iff the Propogate2 function yields a 

positive Res signal. 

As in Section 3, we need to evaluate the collection  in case it is time-valid and 

compute some well-fitted related time value set . In order to do it, we only focus on 

the Glob component of the Perf criteria. We apply a Bellman process: we start by 

providing every DepotD node x with a maximal FP()(x).max time value, and next, 

we assign any other node x with a time value (x) which is the smallest possible, 

taking into account the initial assignments (DepotD(k)), k = 1..K, the current time 

windows FP()(x), x  ACT(), the linking constraint and the distance constraints.  

 

5.6 Attempting an insertion with transfer and building the L-Candidate list. 

So, let us suppose that we are provided with a non-inserted demand index i0 and 

with some 7-uple (k1, k2, x1, y1, x2, y2, z). We want to try and, in case of success, to 

evaluate, an application of the process INSERT2. We perform thus the process Try-

Insert2(i0, k1, k2, x1, y1, x2, y2, z), while proceeding step by step: 

1. We perform a call Test-Load2(i0, k1, k2, x1, y1, x2, y2, z); 

2. We check that DIST(oi0, Succ(T(k1), x1) + Length(T(k1), Succ(T(k), y1) + Dist(y1, 

z) + Dist(z, Succ(T(k2), x2) + Length(T(k2), Succ(T(k2), x2), y2) + DIST(y2, di0) ≤  

i0; 

3. We create two new nodes z-out = (z, i0, -1) and z-in = (z, i0, -1) in Z*, and we 

augment the DIST matrix in such a way it will provide with the respective distances 

between z -out and z-in and their respective neighbors in T(k1) and T(k2).   

4. We perform a call INSERT2(i0, k1, k2, x1, y1, x2, y2, z) on . The considered time 

windows are such that: F(oi0) if x = oi0, F(di0) if x = di0 and [0, + ∞[ if x = z-in or z-

out; 

5. We run the Propagate2 procedure. In case of success, we run the Evaluate2 

procedure and get a resulting value Val; 

6. We restore the DIST matrix, the  collection, and the ACT() set. 

At the end of this process, Try-Insert2 provides us with Res and Val. The Boolean 

Res expresses the feasibility of an application of an INSERT2(i0, k1, k2, x1, y1, x2, y2, 

z) call and the number Val provides us, in case Res = True, with an evaluation of such 

a call. We are now able to summarize the whole resolution process of the DARPT.  

 

5.7 The whole process 
 

The global process consists in a “for” loop, during which the parameter  

progressively decreases from an initial value  until 1: the length P of this loop is a 

parameter of the main procedure. Any iteration inside this loop works as described 

in section 5.3. values are updated as in (E7). A first step involves a call 



 

 

 

INSERTION(N1, N2) and yields some Reject1 rejected demand index set, together 

with some pair (T, t), where T is a valid covering  collection for I – Reject1, and t is a 

related time value set. In case Reject1 is not empty, a second step is performed, 

which involves a call to a procedure INSERTION2, which works while trying to 

insert the rejected demands through applications of the INSERT2 operator. The 

INSERTION2 procedure takes as input the 3-uple (T, t, Reject1) which was 

computed through the first step, and proceeds, according to a “while” loop, in order 

to insert demands of Reject1 through the INSERT2 operator. We denote by N-FREE-

o(i) (N-FREE-d(i)) the number of vehicle which appear in FREE2-o(i) (FREE2-

d(i)). The process is composed of four main steps:  

 

1. It picks up some demand i0 in J: if there exists i such that N-FREE-o(i) = 1 or N-

FREE-d(i) = 1, then i0 is chosen in a random way among those demands in J which 

is such that N-FREE-o(i) = 1 or N-FREE-d(i) = 1. Otherwise, it chooses i0 randomly 

among the demands which minimize the sum of the two quantities.                   (E11) 

2. It builds the Weak-L-Candidate list as in section 8.4, with those 7-uple (k1, k2, x1, 

y1, x2, y2, z) which are such that (k1, x1)  FREE2-o(i0), (k2, x2)  FREE2-d(i0), and 

(y1, x2, z) = Exchange(x1, k1, y2, k2);                (E12) 

3. For any 7-uple (k1, k2, x1, y1,x2, y2, z) in Weak-L-Candidate, it tries the Try-Insert2 

process, and, in case the Res component of the result is true, it inserts the 7-uple  into 

a L-Candidate list, ordered according to the related Val component values;         (E13) 

4. In case L-Candidate is empty, then i0 is inserted into Reject, else: 

- The process picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate: it proceeds 

through a random choice among the up to N3 elements of L-Candidate. N3 

becomes a parameter of INSERTION2;              (E14) 

- It activates the nodes (z, i0, -1) and (z, i0,1) and it effectively performs the 

insertion: (T(k1), T(k2)) ← INSERT2(i0, k1, k2, x1, y1, x2, y2, z); 

- It updates t, applies the Propagate2 and Evaluate2 procedures and updates 

the sets FREE2(i), i  J; 

Finally, the process keeps the best result (T, t, Reject, PerfA,B(T, t)) which was ever 

obtained during this process. So the INSERTION2 and the DARPT-INSERTION 

procedure come may be described as follows:   

 

Procedure INSERTION2 

Input: T1: partial tour collection, t1: time value set, Rej: Rejected Demand set); 

Output: (T, t, Perf, Reject: rejected demand set, N3);     

J ←Rej; Reject← Nil; T ← T1; t ← t1;  

While J  Nil do    

Pick up some demand i0 in J as in (E11); Remove i0 from J; 

If FREE2-o(i0) = Nil or FREE2-d(i0) = Nil then Reject ← Reject  {i0} 

Else 

Compute the Weak-L-Candidate list according to (E12);  

Build the L-Candidate list according to (E13);  

If L-Candidate = Nil then Reject ← Reject  {i0} 

Else 

Picks up (k1, k2, x1, y1, x2, y2, z) in L-Candidate according to (E14);   



 

 

 

Create two new active nodes related to (z, i0, -1) and (z, i0, 1);     

(T(k1), T(k2)) ← INSERT2(i0, k1, k2, x1, y1, x2, y2, z); 

Update t and PF(T) through application of Propagate2 and Evaluate2; 

For any i  J, update FREE2-o(i) and FREE2-d(i);  

Perf ← Perf(T, t);  

INSERTION2← (T, t, Perf, Reject); 

 

DARPT-INSERTION 

Input: (N1, N2, N3, P,  G, VH, D,  (X, DIST, K, CAP), A, B, Z, Dist); 
Output: (T, t, Perf: performance value, Reject: Rejected Demand Index set); 

-Aux ←; Initialize  with a large value ; 

For p = 1..P do 

←Update- (); (T1, t1, Perf1, Reject1) ←INSERTION1(N1, N2);   

If Reject1 = Nil then DARPT-INSERTION ← (T, t, Perf, Reject); 

Else (T, t, Perf, Reject) ← INSERTION2(T1, t1, Reject1, N3); 

← -Aux; ← – 1/P.( – 1);   

Keep the best result (T, t, Reject, PerfA,B(T, t)) obtained during this process. 

6 Computational experiments 

All the insertion techniques presented below were implemented in C++ and each 

replication was run successively on the same core of an Intel Q8300 at 2.5 GHz. For 

the first short experimentation on the DARP with transfers, the DARPT-

INSERTION algorithm is applied to the first instance of Cordeau et al. (2003). We 

solve the R1a instance in order to analyse the evolution of the Ride time caused by 

the variation of the maximum ride time Figure 1 reports the Ride and the Glob 

times (in minutes) where all the demands have been included in valid routes. These 

times are shorter and shorter (up to half of the first time) during the program 

execution. The Glob times increases a little but not it is comparable to the Ride time 

drop. In a real context, i.e. a reactive context, depending on the time the system 

needs to accept (or not accept) the demand, this QoS criterion could be managed by 

the DARPT-INSERTION’s value p. 

Figure 1 – Ride and Global times during 100 iterations (P = 100) 

 



 

 

 

 

For the second set of experimentations on the DARPT, we applied our solution to 

solve the DARPT on randomly generated instances. Each instance is different 

according the size of the time windows, the number of demands, and the number of 

cars. 

Like in Cordeau et al. (2003), we randomly generated the coordinates of pick-up and 

drop-off nodes in the square of side 20. We split the square into 4 parts and the fleet 

VH into 4 sub-fleets VH1, VH2, VH3, and VH4 related to 4 sub-squares EP1, EP2, 

EP3, and EP4. D is classified in two sets: the transverse demands, which have its 

origin node in a different sub-square than the destination, and the local demands. 

For each instance studied here, 50% of the demands are local and uniformly set to 

the 4 sub-squares. We generated a different maximum user ride time which equals 

the product of 20 and the distance between the origin node and the destination node. 

The capacity CAP equals 6 for each vehicle. Each demand has a large time window 

(all the day, from 0 to 1440 minutes) and a tight time window (15 or 30 minutes), 

their Status is granted randomly. 

We solve 12 sets of 5 instances generated by the parameters written above. Table 1 

gives the results obtained after 100 replications of our algorithm. We provided R1c 

which is the rate of the demand inserted in the routes when the transfers are 

forbidden. R1t is the same rate when transfers are allowed. We compute the value 

Gap such as Gap ← (R1t- R1c)/(R1c/100).  

When comparing average rates obtained by each algorithm, about 11.9% of demand 

can be inserted when the transfers are allowed. Without surprise, R1t and R1c are 

better when the fleet has more cars (K=5). The gap is more important when there is 

a higher number of ways to do a transshipment. The instances {5, 6, 7, 8} clearly 

have a better insertion rate than the first and third sets (resp. with |D|=32 and |D|=96), 

with the same fleet.  

When |D| = 96, the Gap values are smaller than for the other instances. According to 

the criterion Glob, it is clear that the algorithm will begin to insert the local demands. 

Indeed, the vehicle will first choose the demands which imply a short rise of the 

Glob value. More local demands a vehicle must integrate results in a lower the 

capacity to accept transverse demands and, by extension, fewer transshipments. 

 

Table 1.  DARP classic Vs DARP with transfers 

Inst. |D| K 
Win. 

RIc RIt 
Gap 

Inst. |D| K 
Win. 

RIc RIt 
Gap 

Size (%) Size (%) 

1 32 4 15 54.59 62.76 14.95 7 64 5 15 39.06 46.12 18.08 

2 32 4 30 61.84 68.32 10.47 8 64 5 30 45.17 48.20 6.72 

3 32 5 15 70.28 86.02 22.40 9 96 4 15 22.43 24.16 7.74 

4 32 5 30 77.00 89.07 15.67 10 96 4 30 25.92 27.02 4.24 

5 64 4 15 29.37 34.34 16.94 11 96 5 15 28.64 32.62 13.93 

6 64 4 30 35.29 37.05 4.97 12 96 5 30 33.26 35.35 6.30 

 

 



 

 

 

References 

 
M. Carey and A. Kwieciński, 1995. Properties of expected costs and performance 

measures in stochastic models of scheduled transport. European Journal of 

Operational Research, 83, 182–199. 

Cordeau, J.-F., Laporte, G. (2003). A Tabu Search heuristic algorithm for the static 

multi-vehicle dial-a-ride problem, Transportation Research B, 37, 579–594. 

Cortes, C. E., Matamala, M., Contardo, C. (2010). The pickup and delivery problem 

with transfers, European Journal of Operational Research, 200, 711-724. 

Deleplanque, S., Quilliot, A. (2013). Constraint propagation for the Dial-a-Ride 

Problem with Split Loads. Studies in Computational Intelligence, 470, Springer, 

31-50. 

Healy, P., Moll, R. (1995). A new extension of local search applied to the dial-a-ride 

problem, European Journal of Operational Research, 83, 83–104. 

Kerivin, H., Lacroix, M., Mahjoub, A. R., Quilliot, A. (2008). The splittable pickup 

and delivery problem with reloads, European Journal of Industrial Engineering, 

2, 112-133. 

Laporte, G., Cordeau, J.F. (2007). The dial-a-ride problem: models and algorithms. 

Annals of Operations Research, 153, 29-46. 

Madsen, O., Ravn, H., Rygaard, J. (1995). A heuristic algorithm for the DARP with 

time windows, multiple capacities, and multiple objectives, Annals of OR 60, 

193–208. 

Masson, R., Lehuédé, F, Péton, O. (2014), The Dial-A-Ride Problem with 

Transfers, Computers & Operations Research, 41, 12-23. 

Masson, R., Lehuédé, F., Péton, O. (2013). An adaptive large neighborhood search 

for the pickup and delivery problem with transfers. Transportation Science, 

47(3), 344-355. 

Nakao, Y., Nagamochi, H. (2012). Worst case analysis for pickup and delivery 

problems with transfer, Communications and Computer Sciences, E91-A (9), 

2328-2334. 

Parragh, S.N., Doerner, K.F., Hartl, R.F. (2010). Variable neighborhood search for 

the dial-a-ride problem, Computers & Operations Research, 37, 1129–1138. 

Psaraftis, H. (1983). An exact algorithm for the single vehicle many-to-many dial-a-

ride problem with time windows. Transportation Science 17, 351–357. 

Psaraftis, H., Wilson, N., Jaw, J., Odoni, A. (1986). A heuristic algorithm for the 

multi-vehicle many-to-many advance request DARP. Transportation Research 

B, 20B, 243-257. 

Shang, J. S., Cu, C. K. (1996). Multicriteria pickup and delivery problem with 

transfer opportunity. Computers & Industrial Engineering, 30(4), 631-645. 

Thangiah, S., Fergany, A., Awam, S. (2007). Real-time split-delivery PDPTW with 

transfers, Central European Journal of Operations Research, 15, 329-349.  


