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Abstract Railway traffic management is the process of executing production plans,
supervising traffic, detecting conflicts, and applying dispatching measures to resolve
them. The activity space of traffic managers is constrained by infrastructure, rolling
stock, and operations related features and rules. These constraints result in functional
requirements that mathematical models should satisfy to be useful to support real-
time traffic management. First, this paper identifies and describes these requirements.
Second, it presents an overview of the most prominent mathematical formulations for
timetabling and rescheduling in the literature. Using sample scheduling problems, it
highlights how individual train runs and interactions are represented. The similarities
and the differences among the formulations are strengthened to distinguish two main
categories of models. Finally, the models are analysed with respect to the functional
requirements from real-time traffic management. As expected, off-line scheduling
models do not satisfy the requirements related to real-time monitoring and interven-
tion. In contrast, on-line models satisfy most requirements. In particular, there are
two rescheduling models that satisfy all functional requirements: the Resource Con-
flict Graph and an extension of the Alternative Graph.
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1 Introduction

Real-time traffic management is the process of executing production plans, super-
vising the traffic situation, detecting conflicts, and executing dispatching actions to
prevent or resolve conflicts. In recent years, several mathematical models of railway
operations have been developed to automatically generate timetables or to determine
dispatching actions. Infrastructure, rolling stock, and operations define the bound-
aries for traffic managers’ activities and thus result in functional requirements that
mathematical models of railway operations must respect so that they can be used in
actual real-time traffic management.

Cordeau et al (1998); Törnquist (2006); Lusby et al (2011); Corman and Meng
(2013); Cacchiani et al (2014) reviewed approaches for solving several tasks related
to railway operations planning and management. Cordeau et al (1998) reviewed ap-
proaches for assembling, routing, and scheduling trains at all planning levels: strate-
gic, tactical, and operational. In addition, also approaches for planning rolling stock
circulations were reviewed. Törnquist (2006) covered tactical and operational schedul-
ing and rescheduling approaches. Scheduling and rescheduling were distinguished as
follows:

”Scheduling (or timetabling) is the process of constructing a schedule from
scratch, while rescheduling (or dispatching) indicates that a schedule already
exists and will be modified.”

In this work, we adopt these definitions. Lusby et al (2011) reviewed strategic, tac-
tical, and operational scheduling and rescheduling approaches. Corman and Meng
(2013) and Cacchiani et al (2014) reviewed approaches for rescheduling, and they
also covered aspects related to crew and rolling stock rescheduling. These previous
reviews aimed at classifying optimization approaches with respect to the task they
were designed to solve, the modelling and solution approaches, and the kind of ex-
periments that was applied to assess their performance. This paper suggests a next
step towards the development of a decision support system for real-time rescheduling
by evaluating the existing mathematical models with respect to the actual functional
requirements of railway operations. This analysis will facilitate the choice of ap-
propriate models and their potential further development for implementation into a
productive system.

The models are illustrated on the network of the Railway operations laboratory
(EBL) at the ETH Zurich, which is shown in Figure 1. Two trains are assumed to
travel through it. Macroscopically (Figure 2), the first train travels from Testadt (T)
to Pewald (P) running through Ypslikon (Y) and Zetthausen (Z), and the second train
travels from Utal (U) to Pewald (P) passing through Testadt (T), Ypslikon (Y), and
Wedorf (W). In Ypslikon a passenger connection is expected. Station Ypslikon (Fig-
ure 3) is used as an instance of a microscopic topology. To make the modelling task
more challenging, it is assumed that the first train reaches Ypslikon from signal A105
and the second one from A205.

The next section summarizes the functional requirements for real-time traffic
management. Section 3 outlines the main classes of mathematical models that have
been proposed for scheduling and rescheduling tasks. Section 4 analyses whether and



Fig. 1 Railway network of the Railway operations laboratory (EBL) at the ETH Zurich (archive of the
institute for transport planning and systems (IVT))

Fig. 2 Macroscopic topology of the network of the Railway operations laboratory at the ETH Zurich (IVT
archive)

Fig. 3 Microscopic topology of station Ypslikon in the Railway operations laboratory at the ETH Zurich
(IVT archive)



how the different mathematical models satisfy the functional requirements for real-
time traffic management. In Section 5, conclusions and future work are presented.

2 Functional requirements from real-time traffic management

To reflect the actual functioning of railway operations and real-time traffic manage-
ment, models for rescheduling railway traffic should satisfy a number of functional
requirements. This section summarizes these functional requirements based on pre-
vious works and on the general features of railway operations. The requirements can
be grouped in different categories depending on the type of resources they are linked
to: (1) infrastructure; (2) rolling stock; (3) operations.

2.1 Infrastructure

Railway infrastructure prescribes the static physical boundaries of railway operations.
Railway infrastructure networks are usually represented using graphs. The granu-
larities of these representations differ considerably depending on the applications.
Macroscopic infrastructure models (or macroscopic topologies) usually contain only
stations, junctions, and links between them. Information on length of tracks, number
of tracks, average running time, and capacity is usually associated with these macro-
scopic links. Detailed representations of railway infrastructure including information
about permissible speeds, gradients, radii, signals, block sections, and release points
are usually referred to as microscopic infrastructure models (or microscopic topolo-
gies). Models combining characteristics of microscopic and macroscopic topologies
are called mesoscopic. Examples of mesoscopic topologies can be obtained by drop-
ping some elements of microscopic models, or using different granularities for repre-
senting different areas.

According to Radtke (2008), conflict detection and resolution requires a micro-
scopic infrastructure model. However, if major disturbances occur, it may be neces-
sary to look for a solution in a large partition of the network. To perform this in a
microscopic topology may be prohibitive because of the long computational times.
Thus, this paper also considers approaches based on topologies with coarser granu-
larities.

Note that, if the energy supply of a network is not uniform, also this element
should be considered by the infrastructure model. As this paper aims at identifying
suitable models for rescheduling railway traffic on the Swiss railway network, and
this network is completely and uniformly electrified, this element is neglected in our
analysis.

2.2 Rolling stock

Rolling stock prescribes the dynamic physical boundaries of railway operations. The
maximum speed on a track is determined by acceleration and braking capabilities of



rolling stock combined with train length, mass, resistance, and infrastructure prop-
erties (curvature, gradient). By considering also the timetable, the feasible dynamics
for each train on each track can be found (Brünger and Dahlhaus, 2008). Cordeau
et al (1998) highlighted that speed can be represented either with fixed profiles or
with variable ones. Considering fixed speed profiles reduces the number of variables,
which reduces the size of the model but also limits the degrees of freedom for finding
solutions. For instance, energy consumption cannot be optimized using fixed speed
profiles because the relevant degrees of freedom are missing.

The length of trains also influences the occupation time of infrastructure resources
and may limit overtaking and routing. In order to delimit the range of study of this
article and to focus on operations related requirements, this issue has been addressed
by another paper that has recently been submitted for publication and is neglected
here.

2.3 Operations

Additional requirements are prescribed by safety rules, monitoring and intervention
features, and operational interdependencies. Safe railway operations are currently en-
sured by fixed block signalling. Networks are partitioned into blocks that are delim-
ited by signals. Blocks can host at most one train at a time, and some time is required
for route setting and releasing. The sequence of block allocations on a train path is
referred to as blocking time stairway. In a long term perspective, this signalling sys-
tem will probably be replaced by moving block signalling. However, the migration
process will last several decades, and this technology will most likely be limited to
some corridors only for many years. Thus, this paper considers the current signalling
system with fixed blocks.1

During operations, trains should run as close as possible to the given timetable,
and departure from a station before schedule is usually forbidden for passenger trains.
Delays are deviations from the timetable. Within this paper, the notation proposed
by Cacchiani et al (2014) is used. Disturbances indicate perturbations that can be
solved by modifying the timetable, but leaving the duties of rolling stock and crew
unchanged. Disruptions indicate perturbations that cannot be resolved by modifying
only the timetable. This paper focuses on rescheduling strategies for disturbances.
Thus, the following analysis neglects rolling stock and crew rostering.

Corman and Meng (2013) identify the following five actions considered by reschedul-
ing:

– re-timing an event (e.g. the arrival at or the departure from a station);
– re-ordering trains on a shared infrastructure;
– local re-routing (e.g. platform change);
– global re-routing;
– re-servicing.

1 If the signalling system of the reference network is not uniform, then the representations of infrastruc-
ture and rolling stock should include the corresponding pieces of information.



Re-servicing corresponds to invasive dispatching measures such as breaking connec-
tions, modifications of stopping patterns, turnarounds before destination, train can-
cellations and replacements. As most rescheduling models have not been conceived
for representing re-servicing features, this paper analyses them only with respect to
breaking connections and cancelling trains.

3 Mathematical models for railway operations

Several mathematical models for supporting different tasks of railway traffic plan-
ning and operations have been developed during the last decades. Different mod-
els have been developed to represent different properties of railway operations, de-
pending on whether they would be applied for macroscopic timetabling, microscopic
timetabling2, or dispatching. This section presents and analyses the representatives
of the main classes of formulations for railway traffic scheduling and rescheduling
that are most prominent in the literature, and which were identified thanks to Cac-
chiani et al (2014); Corman and Meng (2013); Törnquist (2006); Lusby et al (2011);
Cordeau et al (1998). The presentation follows the outline of Baccelli et al (1992)’s
”guidelines for modelling of dynamic systems”:

1. describe the evolution of each resource in the system individually;
2. integrate the interactions among the resources;
3. tackle the problem of initialization.

In this framework, the resources are the train runs, which are fully defined by se-
quences of discrete events coinciding with arrivals and departures at relevant infras-
tructure points. First, the formulations modelling time as a continuous variable are
presented. Then, the formulations relying on discretizations of time are introduced.
All models are illustrated using the example presented in Section 1.

3.1 Continuous time formulations

Event Scheduling Problems (ESP), Alternative Graphs (AG), and FlexiblePath (FP)
are the continuous time formulations that have been applied to railway planning and
operations most broadly. The Periodic ESP (PESP) has been extensively used to pro-
duce periodic macroscopic timetables for given train routes (Caimi, 2009; Herrigel
et al, 2013; Kroon et al, 2009; Peeters and Kroon, 2001; Serafini and Ukovich, 1989).
AG has been primarily exploited to generate microscopic schedules both off- and on-
line (Corman et al, 2010; D’Ariano et al, 2007a, 2008, 2014; Mascis and Pacciarelli,
2002; Mazzarello and Ottaviani, 2007). FP has been applied to find train routes and
schedules in a microscopic topology in real-time (Mu and Dessouky, 2014; Yan and
Yang, 2012).

Let z be a train and S be a topology node where discrete events take place. vz
S

denotes a discrete event that is related to z and takes place at S. In all three cases,

2 A macroscopic(microscopic) timetable is a schedule on a macroscopic(microscopic) topology.



continuous variables tz
v represent the times when the discrete events vz

S occur. The rel-
evant discrete events for ESP are the arrivals and departures at nodes of a macroscopic
topology that coincide with stations where services begin or end or connections take
place. In contrast, the discrete events of AG and FP are associated with nodes of mi-
croscopic topologies. AG considers not only arrivals and departures at all stations, but
also passages at signals. The discrete events associated with FP are the entrances in
and the exits from sections of infrastructure that correspond to tracks between junc-
tions and can host at most one train at a time (refer to Lu et al (2004) for a complete
description of the underlying network partitioning). Figure 4 shows the graph asso-
ciated with ESP model of the sample macroscopic scheduling problem presented in
Section 1 on the macroscopic topology of EBL (Figure 2). Figure 5 shows the sam-
ple microscopic scheduling problem in station Ypslikon (Figure 3). In both figures,
the white nodes represent the discrete events. The black nodes indicate zero events,
which are events take place at time zero independently from any other event.

Given the route of a train z, its run can be fully described as the sequence of
discrete events (vz

S) associated with the topology nodes S on its route. Zero events
are considered for fixing time intervals, when necessary. The relations between the
events are described by inequalities of the form

cType : tz
S2
− tz

S1
≥ f z

(S1,S2)
(1)

These constraints fix the minimum time separation f z
(S1,S2)

allowed between two
events vz

S1
,vz

S2
, and they can describe:

– cRun: the minimum running time f z
(S1,S2)

of train z from departure vz
S1

to arrival
vz

S2
;

– cRun: the maximum running time− f z
(S1,S2)

of train z from departure vz
S2

to arrival
vz

S1
;

– cDwell: the minimum dwell time f z
(S1,S2)

of train z from arrival vz
S1

to departure
vz

S2
;

– cDwell: the maximum dwell time− f z
(S1,S2)

of train z from arrival vz
S2

to departure
vz

S1
;

– cPass: vz
S1

corresponds to a zero event, and vz
S2

cannot take place before f z
(S1,S2)

(Mazzarello and Ottaviani (2007) refers to these constraints as passing constraints);
– cPass: vz

S2
corresponds to a zero event, and vz

S1
cannot take place after − f z

(S1,S2)
;

– cOverall: the minimum running time f z
(S1,S2)

from the departure from the first
station vz

S1
to the arrival at destination vz

S2
(usually defined for ESP only);

– cOverall: the maximum running time − f z
(S1,S2)

from the departure from the first
station vz

S2
to the arrival at destination vz

S1
(usually defined for ESP only);

Note that ESP usually contains for each minimum time constraint also the corre-
sponding maximum time constraint. Therefore, the pairs are identified by cRun, cDwell,
cPass, and cOverall and are associated with intervals

[
f z
(S1,S2)

,− f z
(S2,S1)

]
:

cType : f z
(S1,S2)

≤ (tz
S2
− tz

S1
)≤− f z

(S2,S1)
(2)



Figures 4 and 5 show these relations for ESP and AG as solid grey lines respectively.
FP does not fix the routes in advance but includes a binary variable xz

i for each
train z and infrastructure node i indicating whether z passes i. Oz and Dz denote the
origin and destination node for z. δ−(J) and δ+(J) denote sets of nodes connected
with junction J from the two travel directions. As each train follows a unique contin-
uous route, the following additional constraints must be satisfied:{

xz
Oz

= 1
xz

Dz
= 1 ∀z (3)

∑
i∈δ−(J)

xz
i = ∑

v∈δ+(J)
xz

i ∀J,∀z (4)

D’Ariano et al (2014) extend the AG formulation for rescheduling to feature rerout-
ing. This formulation includes a binary variable xz

i for each train z and for each route
i from the entrance of z in the considered area to its exit. As for FP, this variable
denotes whether z follows route i. In this case, the route continuity constraint (4) is
no longer needed, and the uniqueness constraint (3) becomes

∑
i

xz
i = 1 ∀z (5)

In both cases, the constraints (1) become

cType : tz
S2
− tz

S1
+M(1− xz

i )≥ f z
(S1,S2)

(6)

where M is an large enough constant.
Note that if a train stops unexpectedly, it cannot enter the successive section with

maximum speed. D’Ariano et al (2007b) proposed an iterative approach in which
AG is combined with a second step that updates the realisable speeds according to
the solution found by AG.

The interactions between the different runs can be represented using the time
variables tz

S. In the classical ESP and AG formulations (i.e. no routing), the relation
between event vz

S1
of train z and event vw

S2
of another train w is given by

cType : tw
S2
− tz

S1
≥ f z,w

(S1,S2)
(7)

This can model:

– cConn: minimum connection time f z,w
(S1,S2)

from the arrival vz
S1

of z to the departure
vw

S2
of the destination train w;

– cConn: maximum connection time − f z,w
(S1,S2)

from the arrival vw
S2

of w to the de-
parture vz

S1
of the destination train z;

– cDep, cDep: minimum and maximum separation times f z,w
(S1,S2)

,− f w,z
(S2,S1)

between
the departures vz

S1
,vw

S2
of trains z,w with similar services.

Couples of interactions within ESP can also be modelled using intervals (crf. (2)).
Although the authors do not mention it, interactions could be modelled within FP
and AG’s extension by modifying (7) as follows:

cType : tw
S2
− tz

S1
+M(1− xz

i )+M(1− xw
j )≥ f z,w

(S1,S2)
(8)



where i, j are the either infrastructure resources (FP) or routes (AG) connected with
the discrete events vz

S1
and vw

S2
respectively. These relations are shown as solid orange

lines in Figures 4 and 5.
To coordinate the movement of all trains and to measure the total time needed

to bring all trains to destination, AG contains a ”Start Node” vO corresponding to
a ”start” command and an ”End Node” vN corresponding to a ”finish” command.
These additional nodes are represented as orange disks in Figure 5. A constraint,
cStart, forces the first event vz

S1
of every train to take place after the start command.

A constraint, cExit, imposes that the finish command takes place after the last event
vz

S2
of every train run.

cStart : tz
S1
− tO ≥ 0 cExit : tN− tz

S2
≥ 0 (9)

This for D’Ariano et al (2014)’s AG extension becomes

cStart : tz
S1
− tO +M(1− xz

i )≥ 0 cExit : tN− tz
S2
+M(1− xz

i )≥ 0 (10)

As the ordering of trains in conflict points is not usually known in advance, both
possibilities should be modelled. PESP models headway constraints with a pair of
constrains of type (7) on the events corresponding to the trains entering and leaving
the common section. However, if periodicity is dropped, this yields to infeasibility.
AG represents headway constraints as pairs of alternative arcs, which correspond to
disjunctive constraints of the form

cHead : (tw
S3
− tz

S2
≥ f z,w

(S1,S2,S3,S4)
)∨ (tz

S1
− tw

S4
≥ f w,z

(S1,S2,S3,S4)
) (11)

where vz
S1

corresponds to train z entering the common section; vz
S2

to z leaving it; vw
S3

to train w entering it; vw
S4

to w leaving it. Alternative arcs can also be represented
using binary variables hz,w

i indicating whether train z passes a shared infrastructure i
before w.

cHead :tw
S3
− tz

S2
+Mhz,w

i ≥ f z,w
(S1,S2,S3,S4)

tz
S1
− tw

S4
+M(1−hz,w

i )≥ f w,z
(S1,S2,S3,S4)

(12)

Analogously, FP and AG extension model headway constraints as

cHead :tw
S3
− tz

S2
+Mhz,w

i +M(1− xz
j)+M(1− xw

k )≥ f z,w
(S1,S2,S3,S4)

tz
S1
− tw

S4
+M(1−hz,w

i )+M(1− xz
j)+M(1− xw

k )≥ f w,z
(S1,S2,S3,S4)

(13)

where i = j = k in FP and j,k are routes containing i in AG. The dashed orange
dashed lines in Figures 4 and 5 represent this second type of interactions. Corman
et al (2012) uses alternative arcs for modelling connections. While connections rep-
resented using (7) are forced, the formulation via alternative arcs allows breaking
connections. Disjunctive constraints (11) can also model out of Order constraints
(cOut), which represent the closure of an infrastructure resource (Mazzarello and Ot-
taviani, 2007). In this case, trains are forced to pass the closed section either before
the closure or after the reopening time.



v1T,d cRun cDwell
v1Y,a v1Y,d cRun cDwell

v1Z,a v1Z,d cRun
v1P,a

v2T,d v2Y,a v2Y,d v2W,a v2W,d v2P,a

cHeadcDep

cConn

cConn

cRuncDwellcRuncDwellcRun

0
cPass

v2U,d v2T,a cDwellcRun

Fig. 4 Event Scheduling Problem for two train runs on the infrastructure of EBL (Figure 2). The white
nodes represent the discrete events, and the black node represent a zero event. The grey right arrows
coincide with constraints (1), the left-right arrows with (2), and the orange edges with (7)

v1A105 v1W2 v1C2 v1D52 cExit

vO v1
N

cStart
v1B2 v1Exit

v2A205 v2W2 v2C3 v2D53
cExitcStart

v2B3 v2ExitcRuncRuncRuncRun

0
cOut

cConn

cConn

cPass0

cHead

cRun

cRun

cRun

cRun

cRun

cRun

cRun

cRun

cDwell

cDwell

cDwell

Fig. 5 Alternative Graph of two train runs in Ypslikon (see Figure 3). The white nodes correspond to the
discrete events, the black nodes indicate zero events, and the orange ones the start node (v0) and the end
node (vN ). The solid grey lines represent constraints (1), the solid orange edges represent constraints (7),
and the dashed ones represent different types of constraints (11)

While the scheduling versions of ESP, AG, and FP need no initialization, their
rescheduling versions would need the initial positions of all the trains. Mazzarello
and Ottaviani (2007) models the initial position of a train z in AG with a ”position
node” that is inserted into the train path. The position node is connected with v0
through a constraint of type (1), where f z

S1,S2
denotes the current time. Due to their

similarity with AG, one can imagine to apply the same initialization to the other
models presented so far.

3.2 Discrete time formulations

Several approaches for scheduling and rescheduling that allow routing choices are
based on discrete-time models. Using discrete time sets may be counter-intuitive but
is a powerful method for exploiting degrees of freedom for (re)routing, while keeping
the complexity limited. Packing problems are the the most prominent approaches in
the literature. Their focus is finding conflict-free routes and passing times for all
trains. This section presents the following models:

– Arc Packing Problem (APP) and its weak version (APP’);
– Path Packing Problem (PPP);
– Arc Configuration Problem (ACP);
– Path Configuration Problem (PCP);
– Resource Tree Conflict Graph (RTCG) and Tree Conflict Graph (TCG);



– Resource Conflict Graph (RCG);
– REFormulated Simultaneous train Rerouting and Rescheduling (REF-SRR).

APP, ACP, PPP, and PCP have been used to route trains and produce aperiodic timeta-
bles (Caprara et al, 2002; Borndörfer and Schlechte, 2007; Fischer and Helmberg,
2010). RTCG has been applied to allocate blocks in microscopic timetabling (Caimi,
2009; Caimi et al, 2011). RCG has been used by Caimi (2009) for microscopic
scheduling, and a version called Static Train Dispatching has been used by Fuchs-
berger (2012) for microscopic rescheduling. REF-SRR has been proposed by Meng
and Zhou (2014) for microscopic rescheduling.

As for continuous time models, the discrete events are the arrivals at and depar-
tures from relevant infrastructure points. While the stations are the relevant infras-
tructure points for APP, ACP, PPP, and PCP, the endpoints of the single resources of
the infrastructure are the relevant infrastructure points for RTCG, TCG, RCG, and
REF-SRR. Each event can take place at several times. APP, APP’, ACP, PPP, PCP,
and REF-SRR contain a node for each time and place that can host such an event.
RCTG, TCG, and RCG contain a tree indicating the possible routings on the infras-
tructure resources for each time when a train can enter the controlled area or start a
run from a platform. The left hand side of Figure 6 shows the time-space grid for the
macroscopic scheduling problem presented in section 1 in APP, APP’, ACP, PPP, and
PCP. The left hand side of Figure 7 shows the routing trees in station Ypslikon for the
two trains of the sample microscopic scheduling problem mentioned in Section 1. In
addition, both graphs contain an artificial source node sz and an artificial sink node tz
for each train z. These nodes are depicted as black disks in both figures.

APP, ACP, RTCG, and TCG include a binary variable xz
a for each action a sepa-

rating two events that can be consecutive for train z. Each variable indicates whether
the corresponding action is scheduled or not. These actions coincide with directed
edges and can be:

– aStart: arcs connecting sz to all nodes corresponding to the first station of train z;
– aEnd: arcs connecting all nodes corresponding to the last station of z to tz;
– aRun: arcs connecting the specific time and place where a run starts to the end

time and place (i.e. these arcs define the route choice and the running time);
– aDwell: dwells in stations from specific arrival times to specific departure times;
– aIn f easibility: arcs connecting a node that is not the last on the path of z to tz.

Figures 6 and 7 show some of these actions for the sample problems mentioned above.
For each node v, let δ+(v) and δ−(v) be the outgoing and ingoing arcs respectively.
As each train can be scheduled at most once, and the path should be continuous, the
following constraints must be satisfied.

∑
a∈δ+(sz)

xz
a ≤ 1 ∀z (14)

∑
a∈δ+(v)

xz
a− ∑

a∈δ−(v)
xz

a = 0 ∀v /∈ {sz, tz},∀z (15)

For APP, (15) ensures route continuity, as well as time continuity. As the the stopping
pattern influences the speed that is actually realisable, Fischer and Helmberg (2010)



extend ACP to consider both the rolling stock and the stopping pattern for defining the
realisable speed on a section. PPP, PCP, and RCG include a unique binary variable xz

p
for an entire chain of such actions from the beginning of a train path to the end. The
left hand side of Figure 6 depicts these variables as blue and red paths; the left hand
side of Figure 7 shows these variables as blue and red nodes. In this case, continuity
constraints (15) are implicitly assumed in the choice of the paths. The variables only
have to satisfy the equivalent of (14):

∑
p

xz
p ≤ 1 ∀z (16)

While the paths in Fuchsberger (2012)’s RCG formulation are associated with max-
imal speed profiles, Caimi (2009) proposed a RCG formulation for scheduling in
regions with low traffic density which considers different speed profiles.

Interactions between trains in APP, APP’, ACP, PPP, PCP, RTCG, and TCG cor-
respond to allocation conflicts. If a line between two stations that can host at most
one train at ah time or a single infrastructure resource is considered, then a conflict
occurs if the occupation intervals of different trains overlap. If xz

a and xw
b correspond

to conflicting allocations of an infrastructure resource r, APP’ and TCG prevent the
simultaneous allocation through

xz
a + xw

b ≤ 1 (17)

APP, PPP, RTCG, and RCG model conflicting allocations using conflict graphs. For
a given infrastructure resource r, a conflict graph contains a node for each edge con-
nected with that resource. Two nodes are linked together by an edge if either they
correspond to the same train, or their allocation intervals of the resource overlap (see
e.g. Herrmann (2006) for further information about conflict graphs). Let Cr be the set
of maximal cliques of the conflict graph on the infrastructure resource r. Then, the
following constraints prevent conflicts:

(APP,APP′,RTCG) ∑(z,a)∈C xz
a ≤ 1 ∀C ∈ Cr,r (18)

(PPP,RCG) ∑(z,p)∩C 6= /0 xz
p ≤ 1 ∀C ∈ Cr,r (19)

The right hand side of Figure 6 shows the conflict graph for the sample macroscopic
scheduling problem presented in Section 1, assuming that both trains use the same
track between Testadt and Ypslikon. The nodes correspond to the edges between
Testadt and Ypslikon, i.e. the edges in the orange box on the left hand side. The red
and blue edges of the conflict graph connect all nodes corresponding to the one train,
and the black edges coincide with conflicts. The right hand side of Figure 7 shows
the conflict graph for resource w8 (i.e. in the orange box of the left hand side) in the
sample microscopic scheduling problem presented in Section 1.

Fischer et al (2008) include capacity constraints in PPP, indicating how many
trains can be hosted and how many edges can be assigned to each direction. Fuchs-
berger (2012)’s RCG model splits all train routes in one arriving to the station and
one leaving it. Scheduled connections are used to identify incompatible stairways, i.e.
pairs of an inbound and an outbound blocking time stairways of trains with a sched-
uled connection but without enough time to perform it. For every such pair, a variable
indicating whether the connection has to be forced during operations is defined.
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ACP and PCP are extensions of APP and PPP respectively. Instead of using con-
flict graphs directly, ACP and PCP use them to identify configurations. A configura-
tion q is a set of trips on a track r that are not conflicting with each other. Thus, it
satisfies

|q∩C| ≤ 1 ∀C ∈ Cr (20)

A configuration q for a track r is a path from an artificial source node sr to an artificial
sink node tr. The edges on the path either correspond to runs on the track or connect s j
to departure nodes, t j to arrival nodes, or an arrival to possible departures of follow-
up runs. For each such edge e, let ye be a binary variable, indicating whether the
edge is part of the configuration. δ+(v) and δ−(v) denote the outgoing and ingoing
arcs for each node v of this graph. A conflict-free schedule is obtained by choosing a
unique continuous path in this graph and limiting the choice of actions a in APP to
the ones that are contained in the configuration path. This corresponds to substituting
(18) with the following constraints, and the obtained model is ACP:

∑
e∈δ+(v)

ye− ∑
e∈δ−(v)

ye = 0 ∀e /∈ {sr, tr},∀r (21)

∑
e∈δ+(sr)

ye ≤ 1 ∀r (22)

xa− ya ≤ 1 ∀a (23)

For each configuration q, PCP includes a unique binary variable yq indicating whether
q is assigned in the schedule. Thus, continuity constraints (21) are no longer needed.
Let Qr be the set of configurations on track r. PCP is obtained by substituting (19)
with the following constraints:

∑
q∈Qr

yq ≤ 1 ∀r (24)

∑
a∈p

xp−∑
a∈q

yq ≤ 0 ∀a (25)

REF-SRR contains binary variables xz
i, j indicating whether train z passes infras-

tructure nodes i and j sequentially; az
i, j,t indicating whether train z arrives at j from

i at time t; dz
i, j,t indicating whether train z departs from i towards j at time t; yz

i, j,t
indicating whether train z is between i and j at time t. The relations between time
variables az

i, j,t , dz
i, j,t correspond to running and dwell times and are modelled sim-

ilarly as in continuous time formulations. Route continuity and uniqueness are en-
sured by constraints (14) and (15) in the variables xz

i, j,t . As the decision variables
correspond to the arrival and departure times and the route choices, this model in-
cludes constraints modelling the time-space interdependencies for all trains. Meng
and Zhou (2014) also includes passing constraints (cfr. discrete time formulations)
for preventing departures ahead of schedule. Conflict-free operations are modelled as
clique constraints (18) in yz

i, j,t for each time t and track (i, j).
As for continuous time formulations, while scheduling approaches need no ini-

tialization, Fuchsberger (2012)’s and Meng and Zhou (2014)’s rescheduling approaches
need the initial position of the trains. Fuchsberger (2012) uses a rolling time horizon,
which fixes the blocking time stairways of train movements that have already started



or are starting too early in the future and uses predictions for the entrance times of
trains that are approaching the controlled area.

4 Results

Thanks to the presentation of the previous section, two main categories of mathe-
matical models of railway operations can be distinguished. The formulations in the
first category model time with continuous variables and safety with minimal time
differences between pairs of consecutive trains on each infrastructure resource. This
category includes ESP, AG and FP. The second category contains models based on
discrete time variables, modelling conflicts as cliques of a conflict graph. APP, ACP,
RTCG, PPP, PCP, RCG, and SRR are in this second category. While variables in APP,
ACP, and RTCG represent single train actions, variables in PPP, PCP, and RCG model
entire paths, and variables in SRR correspond to route choices and to events that can
only take place at a discrete set of points in time. Some models cannot be classified
in any of these categories because they rely on discrete representations of time and
model conflicts pairwise. Examples of such models are APP’ and TCG (i.e. the weak
versions of APP and RCTG) . Table 1 shows the results of the analysis of the models
from Section 3 with respect to the functional requirements listed in Section 2.

Table 1 Models and functional requirements:×means that the model satisfies the functional requirement;
(×) means that the requirement is satisfied off-line (i.e. for timetabling); ◦ means that there is a model
extension which satisfies the requirement

continuous time discrete time
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SR

R

PP
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PC
P

R
C

G

infrastructure
macroscopic × × × ×
microscopic × × × × × ×

rolling
stock

max. speed × × × × × × × × × ×
real. speed ◦ ◦ × ×

operations

timetable × × × ×
closed tracks × × × ×
re-timing (×) × × (×) (×) (×) (×) × (×) ×
re-ordering (×) × × (×) (×) (×) (×) × (×) ×
re-routing ◦ × (×) (×) (×) (×) × (×) ×
connections ◦ ×
cancel train ◦ × (×) (×) (×) (×) × (×) ×

pairwise conflicts on tracks on paths

conflict cliques



4.1 Infrastructure

ESP, APP, ACP, APP’, PPP, and PCP are based on a macroscopic topology, which
is not suitable for modelling safety constraints of fixed block signalling systems pre-
cisely. Still, for each of these macroscopic models, there is a microscopic model that
considers time and conflicts analogously. ESP, AG, and FP model time with continu-
ous variables and require a minimum time separation between pairs of trains using the
same infrastructure resource. APP’ and TCG model discrete time choices and require
that at most one allocation from each pair of conflicting allocations of an infrastruc-
ture resource is assigned. The other models limit time choices to discrete sets and
model headway constraints using conflict graphs. APP, ACP, RTCG, and REF-SRR
describe single activities (run, dwell), and PPP, PCP, and RCG describe entire paths.

4.2 Rolling Stock

All models are able to describe train dynamics considering maximum speed profiles.
For timetabling the stopping patterns are usually known in advance. Thus, approaches
modelling maximum speed profiles (that consider the planned stops) suffice to gener-
ate feasible schedules. If stopping patterns are not fixed in advance, it is necessary to
consider the effect of stopping on the minimum feasible running time. As PPP, PCP,
and RCG consider entire train paths, the actual running times are computed during
the preprocessing phase, after having chosen which paths to include into the model.
In the other models, the dependence of running times on stops has to be modelled
within the optimization problem. Fischer and Helmberg (2010)’s ACP extension pro-
vides the actually realisable speed profiles as functions of rolling stock and stopping
pattern. Note that this is the only model including variables that model explicitly
whether a train stops at an infrastructure point or just passes it. In any case, if a train
has to stop or it runs with limited speed on a track, it is not possible to enter the
next contiguous track at maximum speed. D’Ariano et al (2007b) proposed an itera-
tive approach in combining an AG with a second step updating the realisable speeds
according to the solution found by the AG. RTCG computes conflicts using the max-
imal speed profiles allowed. If it cannot find a conflict free trajectory for each train,
then the train is cancelled.

4.3 Operations

Models conceived for timetabling rather than dispatching do not usually include rep-
resentations of operations related features. In addition, operations related features
are represented differently by the models that have already been applied to real-time
operations (i.e. AG, FP, RCG, and REF-SRR).

First, the constraints given by the planned timetable may be included as a set of
passing constraints (i.e. inequalities imposing the departure times from stations to be
greater to or equal to the scheduled times), as part of the objective function (i.e. terms
that penalize early and late departures as well as too early or late arrivals and which



usually depend on the amount of delay), or by considering them in the preprocessing
phase when choosing the paths.

Second, FP, RCG, and REF-SRR represent routing possibilities by binary vari-
ables that can be forced to zero to represent closed tracks. The classical AG contains
no such variable and does not support re-routing. If a track is closed, trains are forced
to pass it either before its closure or after its reopening time. D’Ariano et al (2014)’s
AG extension contains binary variables for routing possibilities. Thus, closed tracks
can be represented as by FP.

Third, all models presented include representations of either intervention features
or their off-line counterpart. Formulations for timetabling support timing, ordering,
routing, and/or scheduling/not scheduling trains, which are the off-line counterparts
of re-timing, re-ordering, re-routing, and cancellation of trains. (Re-)timing is per-
formed in models with continuous time variables by changing the value of time vari-
ables. In models considering discrete time choices, (re-)timing corresponds to a dif-
ferent choice for time-space combination. ESP, AG, and FP formulate (re-)ordering
options as pairs of alternative arcs. The other formulations contain no such arc, and
re-ordering is performed implicitly by choosing times and routes. All formulations
based upon discrete times feature (re-)routing. Also D’Ariano et al (2014)’ AG ex-
tension and FP feature re-routing. Breaking connections is featured only by RCG and
Corman et al (2012)’s AG extension. ESP and the classical AG formulation aim at
finding suitable times for previously selected discrete events. Thus, if a train cannot
be scheduled because it conflicts with other services, the solution may either not exist
or schedule the train after all other services. In contrast, train cancellation is repre-
sented by all other models as not scheduling the train. This coincides with all routing
or path variables taking value zero. Note that Meng and Zhou (2014)’s REF-SRR
formulation imposes that each train is scheduled exactly once, but this constraint can
be relaxed to model that each train is scheduled at most once.

5 Conclusions and future work

The main differences between models are the representations of conflicts (pairwise
or as cliques) and time (continuous or discrete). As expected, the formulations that
have been developed for off-line scheduling do not satisfy all the functional require-
ments. In particular, they do not include any representation of delays and closed
tracks, and they only consider off-line versions of dispatching actions. In contrast,
the four formulations that have been proposed for real-time operations satisfy most
requirements related to infrastructure and operations. In particular, known versions
of AG and RCG satisfy all these requirements and also the requirements related to
rolling stock. Although being different from each other, the presented models show
some similarities. Thus, some models can be considered as microscopic versions of
macroscopic models or extensions of models that have less features. Due to their sim-
ilarities with microscopic rescheduling models, the macroscopic scheduling models
presented in this work (ESP, APP, ACP, PPP, PCP) may be extended to satisfy the
missing requirements. Doing so, it would be possible to consider traffic management
at different hierarchical levels, depending on the size of perturbations. Conversely,



due to its similarity with PPP, it may be possible to extend RCG to a sort of micro-
scopic PCP and apply column generation techniques to be able to deal with large
instances as reported by Borndörfer and Schlechte (2007).

Basing on the analysis presented in this work, the next steps are to give real-time
traffic management an appropriate mathematical representation exploiting the simi-
larity of RCG to PPP, to find an appropriate solving strategy and, finally, to implement
a decision support tool for dispatchers.
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Brünger O, Dahlhaus E (2008) Running time estimation. In: Hansen IA, Pachl J (eds)
Railway Timetabling and Operations, 2nd edn, Eurail press, Hamburg, Germany,
chap 4, pp 65–89

Cacchiani V, Huisman D, Kidd M, Kroon L, Toth P, Veelenturf L, Wagenaar J
(2014) An overview of recovery models and algorithms for real-time railway
rescheduling. Transportation Research Part B: Methodological 63(0):15 – 37, DOI
10.1016/j.trb.2014.01.009

Caimi G, Chudak F, Fuchsberger M, Laumanns M, Zenklusen R (2011)
A new resource-constrained multicommodity flow model for conflict-free
train routing and scheduling. Transportation Science 45(2):212–227, DOI
10.1287/trsc.1100.0349

Caimi GC (2009) Algorithmic decision support for train scheduling in a large and
highly utilised railway network. Dissertation no. 18581, ETH Zurich

Caprara A, Fischetti M, Toth P (2002) Modeling and solving the train timetabling
problem. Operations Research 50(5):851–861, DOI 10.1287/opre.50.5.851.362

Cordeau JF, Toth P, Vigo D (1998) A survey of optimization models for train routing
and scheduling. Transportation Science 32(4):380–404

Corman F, Meng L (2013) A review of online dynamic models and algorithms for
railway traffic control. In: Intelligent Rail Transportation (ICIRT), 2013 IEEE In-
ternational Conference on, pp 128–133, DOI 10.1109/ICIRT.2013.6696281

Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2010) A tabu search algorithm for
rerouting trains during rail operations. Transportation Research Part B: Method-
ological 44(1):175 – 192, DOI 10.1016/j.trb.2009.05.004

Corman F, DAriano A, Pacciarelli D, Pranzo M (2012) Bi-objective conflict detec-
tion and resolution in railway traffic management. Transportation Research Part
C: Emerging Technologies 20(1):79 – 94, DOI 10.1016/j.trc.2010.09.009, special
issue on Optimization in Public Transport+ISTT2011 Special issue on Optimiza-



tion in Public Transport+International Symposium on Transportation and Traffic
Theory (ISTTT), Berkeley, California, July 1820, 2011

D’Ariano A, Pacciarelli D, Pranzo M (2007a) A branch and bound algorithm for
scheduling trains in a railway network. European Journal of Operational Research
183(2):643 – 657, DOI 10.1016/j.ejor.2006.10.034

D’Ariano A, Pranzo M, Hansen I (2007b) Conflict resolution and train speed coor-
dination for solving real-time timetable perturbations. Intelligent Transportation
Systems, IEEE Transactions on 8(2):208–222, DOI 10.1109/TITS.2006.888605

D’Ariano A, Corman F, Pacciarelli D, Pranzo M (2008) Reordering and local
rerouting strategies to manage train traffic in real time. Transportation Science
42(4):405–419, DOI 10.1287/trsc.1080.0247
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