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Abstract In the railway passenger service planning, the main focus is often
on the feasibility of the solutions and/or the associated costs of the Train
Operating Company (TOC). The costs of TOCs’ are the driver for the non-
cyclic version of the Train Timetabling Problem (TTP), whereas feasibility
is the main concern of the cyclic version of the same problem. Usually, the
passengers for whom the service is designed are not taken into consideration,
when creating the timetables. This could be one of the main reasons for which
the willingness of passengers to use trains as their mean of transport has
reduced. In this research, a choice based optimization approach is introduced
that addresses this issue from passenger satisfaction point of view. We validate
our model using a semi-real data of a major European railway company.

Keywords Railway Passenger Service · Ideal Timetable · Cyclic vs.
Non-Cyclic

1 Introduction

In this study, we give attention to the problematic of providing the passenger
service in railways. The offered product in this case is the timetable and the
consumer is the passengers. However, the passenger demand is subject to the
human behavior that incorporates several factors, to list a few: sensitivity to
the time of the departure related to the trip purpose (weekday peak hours
for work or school, weekends for leisure, etc.), comfort, perception and oth-
ers. Moreover the passenger service has to compete with other transportation
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modes (car, national air routes, etc.) and thus faces even higher pressure to
create good quality timetables.
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Fig. 1 Planning overview of railway operation

The current TOC planning horizon as described by Caprara et al (2007)
is visualized on Figure 1. In the first stage, the Line Planning Problem (LPP)
decides on which lines will be operated and with what frequencies. The LPP
is the only problem in the planning horizon that actually takes into account
the demand in the form of an hourly Origin Destination (OD) flows (Schöbel
(2012)). The second stage in the planning horizon, is the Train Timetabling
problem (TTP), where two different models exist: non-cyclic (Caprara et al
(2002)) and cyclic (Peeters (2003)). The non-cyclic TTP takes as input the
ideal timetables and tries to resolve the track conflicts by minimizing the
timetable shifts needed. However, the origin of the ideal timetables is unclear
as well as the punishment for the shifts. Similarly, in the cyclic problem, the
model takes as an input the cycle and creates either arbitrary feasible solutions
or a feasible solutions based on user defined objective function. Typically, the
user defined functions are rather simplified such as minimization of travel
time, which can not properly account for the passenger behavior. Both of the
models can secure connections between two trains, however with no incentive
if the connection is actually needed as none of the models takes passengers
into account.

In the surveyed literature, a model that integrates mode choice and cyclic
version of the TTP is presented (Cordone and Redaelli (2011)). The objective
function is maximization of the demand captured by the railway mode as
opposed to other modes. The constraint that estimates the demand captured
by the timetable is using a logit model, whose attributes form the total trip



length. The resulting formulation is non-linear and non-convex and is solved
using heuristics.

In our study, we propose to integrate the Route Choice Model (RCM) and
the TTP forming a new planning phase called the Ideal Train Timetabling
Problem (ITTP). The ITTP is using the output of the LPP and serves as an
input to the traditional TTP and hence, it is placed between the two respective
problems (Figure 2). In this problem, we mimic the RCM by introducing a
passenger cost related to a concerned timetable. The objective function of this
problem is the passenger cost minimization. The model will allow timetables
of the TOC’s train lines to take the form of the non-cyclic or cyclic sched-
ule. Moreover, we introduce a demand induced connections. The connections
between the trains are not pre-defined, but are subject to the demand (via
passengers’ costs).
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Fig. 2 Modified overview of railway operation

The structure of the manuscript is as follows: we introduce a definition of
a passenger cost (Section 2), followed by a problem definition and its math-
ematical formulation (Section 3). The model is tested on a Swiss case study
(Section 4). The paper is finalized by drawing some conclusions and discussion
of possible extensions (Section 5).

2 Passenger Cost

In order to find a good timetable from the passenger point of view, we need to
take into account passenger behavior. Such a behavior can be modeled using
discrete choice theory (Ben-Akiva and Lerman (1985)). The base assumption
in discrete choice theory is that the passengers maximize their utility, i.e.
minimize the cost associated with each alternative and select the best one.

We propose the following costs associated with ideal passenger timetable:

– in-vehicle-time (VT)



– waiting time (WT)
– number of transfers (NT)
– scheduled delay (SD)

The in-vehicle-time is the (total) time passengers spend on board of
(each) train. This time allows the passengers to distinguish between the “slow”
and the “fast” services.

The waiting time is the time passengers spend waiting between two con-
secutive trains in their respective transfer points. The cost perception related
to the waiting time is evaluated as double and a half of the in-vehicle-time
(see Wardman (2004)).

The transfer(s) aim at distinguishing between direct and interchange ser-
vices. In literature and practice, it is by adding extra travel (in-vehicle) time to
the overall journey. In our case, we have followed the example of Dutch Rail-
ways (NS), where penalty of 10 minutes per transfer is applied (see de Keizer
et al (2012)). Even though variety of studies show that number of interchanges,
distance walked, weather, etc. play effect in the process, it is rather difficult
to incorporate in optimization models. Thus using the applied value (by NS)
will bring this research closer to the industry.

The scheduled delay is indicating the time of the day passengers want
to travel, i.e. following the assumption that the demand is time dependent.
For example: most of the people have to be at their workplace at 8 a.m. Since
it is impossible to provide service that would secure ideal arrival time to the
destination for everyone, scheduled delay functions are applied (Figure 3).
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Fig. 3 Scheduled Delay Functions

As shown in Small (1982), the passengers are willing to s hift their arrival
time by 1 to 2 minutes earlier, if it will save them 1 minute of the in-vehicle-
time, similarly they would shift their arrival by 1/3 to 1 minute later for
the same in-vehicle-time saving. If we would consider the boundary case, the
lateness (f1 = 1) is perceived equal to the in-vehicle-time and earliness (f2 =
0.5) has half of the value (as seen on Figure 3).

To estimate the perceived cost (quality) of the selected itinerary in a given
timetable for a single passenger, we sum up all the characteristics:

C = V T + 2.5 ·WT + 10 ·NT + SD [min] (1)
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For a better understanding, consider the following example using network
on Figure 4: passenger’s itinerary consists of taking 3 consecutive trains in
order to go from his origin to his destination, he has to change train twice. If
he arrives to his destination earlier than his ideal time, his SD will be:

SDe = argmax

(
ideal time− arrival time

2
, 0

)
(2)

We use argmax function as one train line has several trains per day sched-
uled and the passenger selects the one closest to his desired traveling time. On
the other hand, if he arrives later than his ideal time, then his SD will be:

SDl = argmax (0 , arrival time− ideal time) (3)

The overall scheduled delay is then formed:

SD = argmin (SDe , SDl) (4)

His overall perceived cost will be the following:

C =
∑

trains

V T + 2.5 ·
∑

transfers

WT + 10 ·NT + SD [min] (5)

The resulting value is in minutes, however it is often desirable to estimate
the cost in monetary values for pricing purposes. In such a case, national
surveys estimating respective nation’s value of time (VOT) exist. The VOT is
given in nation’s currency per hour, for instance in Switzerland the VOT for
commuters using public transport is 27.81 swiss francs per hour (Axhausen
et al (2008)). To make the cost in monetary units, simply multiply the whole
Equation 1 by the VOT/60.

The aim of our research is not to calibrate the weights in Equation 1, but to
provide better timetables in terms of the departure times. The weights serve
as an input for our problem and thus can be changed at any time. Adding
everything up, the ideal passenger timetable can be defined as follows:

The ideal passenger timetable consists of train departure times that
passengers’ global costs are minimized, i.e. the most convenient path
to go from an origin to a destination traded-off by a timely arrival to
the destination for every passenger.



Similar concept, improving quality of timetables has been done in Vansteen-
wegen and Oudheusden (2006, 2007). Their approach has been focused on re-
liable connections for transferring passengers, whereas in our framework we
focus on the overall satisfaction of every passenger.

Other concept similar to ours has been used in the delay management,
namely in Kanai et al (2011) and Sato et al (2013). However their definition
of dissatisfaction of passengers omits the scheduled delay.

3 Mathematical Formulation

In this section, we present a mixed integer programming formulation for the
Ideal Train Timetabling Problem. The aim of this problem is to provide the
ideal timetables, i.e. to minimize the passenger cost. The input of the ITTP
is the demand that takes the form of the amount of passengers that want to
travel between OD pair i ∈ I and that want to arrive to their destination at
their ideal time t ∈ Ti. Apart of that, there is a pool of lines l ∈ L and its
segments g ∈ Gl. Segment is a part of the line between two stations, where
the train does not stop. Each line has an assigned frequency expressed as the
available trains v ∈ V l (lines, segments and frequencies are the output of the
LPP). Based on the pool of lines, the set of paths between every OD pair
p ∈ Pi can be generated. The path is called an ordered sequence of lines to
get from an origin to a destination including details such as the running time
from the origin of the line to the origin of the OD pair hpli (where l = 1), the
running time from an origin of the OD pair to a transferring point between
two lines rpli (where l = 1), the running time from the origin of the line to the

transferring point in the path hpli (where l > 1 and l < |Lp|), the running time

from one transferring point to another rpli (where l > 1 and l < |Lp|) and the
running time from the last transferring point to a destination of the OD pair
rpli (where l = |Lp|). Note that the index p is always present as different lines
using the same track might have different running times.

Part of the ITTP is the routing of the passengers through the railway
network. Using a decision variable xtpi , we secure that each passenger (com-
bination of indices it) can use at most one path. If there is no path assigned
to a given passenger (due to the limited capacity of the trains), it is assumed
that the passenger would take the earliest possible shortest path outside of the
planning horizon H.

Within the path itself, passenger can use exactly one train on every line
in the path (decision variable ytplvi ). These decision variables, among others,
allow us to backtrace the exact itinerary of every passenger. The timetable is
understood as a set of departures for every train on every line (values of dlv).
The timetable can take form of a non-cyclic or a cyclic version (depending if
the cyclicity constraints are active, see below).

Since we know the exact itinerary of every passenger, we can measure the
train occupation olvg of every train v of every line l on each of its segment

g. Derived from the occupation, number of train units ulv is assigned to each



train. This value can be equal to zero, which means that the train is not
running and the frequency of the line can be reduced.

We can formulate the ITTP as follows:

Sets Following is the list of sets used in the model:

I – set of origin-destination pairs
Ti – set of ideal times for OD pair i
Pi – set of possible paths between OD pair i
L – set of operated lines
Lp – set of lines in the path p
V l – set of available trains for the line l (frequency)
Gl – set of segments on line l

Input Parameters Following is the list of parameters used in the model:

H – end of the planning horizon [min]
M – sufficiently large number (can take the value of H)
m – minimum transfer time [min]
c – cycle [min]
πt
i – ideal arrival time of a passenger it to his destination [min]

rpli – running time between OD pair i on path p using line l
[min]

hpli – time to arrive from the starting station of the line l to the
origin/transferring point of the OD pair i in the path p
[min]

Dt
i – demand between OD pair i with ideal time t [passengers]

q – value of the in vehicle time [monetary units per minute]
qw – value of the waiting time in the relation to the VOT [unit-

less]
f1 – coefficient of being late in the relation to the VOT [unitless]
f2 – coefficient of being early in the relation to the VOT [unit-

less]
a – penalty for having a train transfer [min]
β – capacity of a single train unit [passengers]
j – maximum length of the train [train units]
γi – in-vehicle-time of the shortest path between OD pair i

[min]
ηi – number of transfers in the shortest path for OD pair i

[unitless]

C
t

i – penalty cost for not serving passenger it inside of the plan-
ning horizon H [monetary units]

Decision Variables Following is the list of decision variables used in the model:

Cti – the total cost of a passenger with ideal time t between OD pair i



wt
i – the total waiting time of a passenger with ideal time t between OD

pair i

wtp
i – the total waiting time of a passenger with ideal time t between OD

pair i using path p

wtpl
i – the waiting time of a passenger with ideal time t between OD pair

i on the line l that is part of the path p, i.e. the waiting time in
the transferring point, when transferring to line l

xtpi – 1 – if passenger with ideal time t between OD pair i chooses path
p; 0 – otherwise

sti – the value of the scheduled delay of a passenger with ideal time t
between OD pair i

stpi – the value of the scheduled delay of a passenger with ideal time t
between OD pair i traveling on the path p

dlv – the departure time of a train v on the line l (from its first station)

ytplvi – 1 – if a passenger with ideal time t between OD pair i on the path
p takes the train v on the line l; 0 – otherwise

zlv – dummy variable to help modeling the cyclicity corresponding to a
train v on the line l

olvg – train occupation of a train v of the line l on a segment g
ulv – number of train units of a train v on the line l
αl
v – 1 – if a train v on the line l is being operated; 0 – otherwise

Routing Model The ITTP model can be decomposed into 2 parts: routing
and cost estimation. The routing takes care of the feasibility of the solution,
whereas cost estimation takes care of the passenger cost attributes. At first,
we present the Routing Model (RM):

min
∑
i∈I

∑
t∈Ti

Dt
i · Cti (6)

∑
p∈Pi

xtpi ≤ 1, ∀i ∈ I, ∀t ∈ Ti, (7)

∑
v∈V l

ytplvi = xtpi , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp, (8)

(
dlv − dlv−1

)
= c · zlv, ∀l ∈ L,∀v ∈ V l : v > 1, (9)

olvg =
∑
i∈I

∑
t∈Ti

∑
p∈Pi

ytplvi ·Dt
i , ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl, (10)

ulv · β ≥ olvg, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl, (11)

αl
v · j ≥ ulv, ∀l ∈ L,∀v ∈ V l, (12)

Cti ≥ 0, ∀i ∈ I, ∀t ∈ Ti, (13)

dlv ≥ 0, ∀l ∈ L,∀v ∈ V l, (14)

xtpi ∈ (0, 1) , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (15)



ytplvi ∈ (0, 1) , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

∀l ∈ Lp,∀v ∈ V l, (16)

olvg ≥ 0, ∀l ∈ L,∀v ∈ V l,∀g ∈ Gl, (17)

ulv ∈ (0, j) , ∀l ∈ L,∀v ∈ V l, (18)

αl
v ∈ (0, 1) , ∀l ∈ L,∀v ∈ V l, (19)

zlv ∈ N, ∀l ∈ L,∀v ∈ V l. (20)

The objective function (6) aims at minimizing the passenger cost. Con-
straints (7) secure that every passenger is using at most one path to get
from his/her origin to his/her destination. Similarly constraints (8) make sure
that every passenger takes exactly one train on each of the lines in his/her
path, if this path is being used. Constraints (9) model the cyclicity using
integer division. When solving the non-cyclic version of the problem, these
constraints have to be removed. Constraints (10) keep track of a train oc-
cupation. Constraints (11) verify that the train capacity is not exceeded on
every stretch/segment of the line. Constraints (12) assign train drivers, i.e. if
a train v on the line l is being operated or not. Constraints (13)–(20) set the
domains of decision variables.

Cost Estimating Constraints To make the ITTP complete, we need to expand
the Routing Model with the cost estimating constraints. We will add the cost
related constraints in blocks of attributes that create the cost of a passenger.

sti ≥ s
tp
i −M ·

(
1− xtpi

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (21)

stpi ≥ f1 ·
((
d|L|v + h

|L|
i + r

p|L|
i

)
− πt

i

)
−M ·

(
1− ytp|L|vi

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|,

(22)

stpi ≥ f2 ·
(
πt
i −

(
d|L|v + h

|L|
i + r

p|L|
i

))
−M ·

(
1− ytp|L|vi

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|,

(23)

sti ≥ 0, ∀i ∈ I, ∀t ∈ Ti, (24)

stpi ≥ 0, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi. (25)

The first block of constraints takes care of the scheduled delay (SD). In
our model we have 2 types of scheduled delay: SD for every path (constraints
(25)) and SD that is linked to the path, which will be the final selected
path of a given passenger(s) with a given ideal time (constraints (24)). As
described in the Section 2, the constraints (22) model the earliness of the
passengers (Equation 2) and constraints (23) model the lateness (Equation
3). Constraints (21) make sure that only one SD is selected (Equation 4) –



not necessarily the lowest one as it depends on the cost of the whole itinerary
(constraints (33)), i.e. the path with the smallest overall cost will be selected
for the given OD pair with a given ideal time. These constraints also allow us to
avoid the non-linearity in the estimation of the final passenger cost (constraints
(33)).

wt
i ≥ w

tp
i −M ·

(
1− xtpi

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

(26)

wtp
i =

∑
l∈Lp\1

wtpl
i , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

(27)

wtpl
i ≥

((
dlv + hpli

)
−
(
dl

′

v′ + hpl
′

i + rpl
′

i +m
))

∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

−M ·
(

1− ytpl
′v′

i

)
−M ·

(
1− ytplvi

)
, ∀l ∈ Lp : l > 1, l′ = l − 1,

∀v ∈ V l,∀v′ ∈ V l′ , (28)

wtpl
i ≤

((
dlv + hpli

)
−
(
dl

′

v′ + hpl
′

i + rpl
′

i +m
))

∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

+M ·
(

1− ytpl
′v′

i

)
+M ·

(
1− ytplvi

)
, ∀l ∈ Lp : l > 1, l′ = l − 1,

∀v ∈ V l,∀v′ ∈ V l′ , (29)

wt
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti, (30)

wtp
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

(31)

wtpl
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

∀l ∈ Lp. (32)

The second block of constraints is modeling the waiting time (WD).
There are 3 types of waiting time: the final selected waiting time in the best
path (constraints (30)), the total waiting time of every path (constraints (31))
and the waiting time at every transferring point in every path (constraints
(32)). The constraints (28) and (29) are complementary constraints that
model the waiting time in the transferring points in every path. In other words,
these two constraints find the two best connected trains in the two train lines
in the passengers’ path. Constraints (27) add up all the waiting times in one
path to estimate the total waiting time in a given path. Constraints (26) make
sure that only one WT is selected (similarly as constraints (21) for SD).

Cti ≥ q · qw · wt
i + q · a ·

∑
p∈P

xtpi · (|L
p| − 1)

+q ·
∑
p∈P

∑
l∈Lp

rpli · x
tp
i + q · sti, ∀i ∈ I, ∀t ∈ Ti, (33)



Cti ≥

1−
∑
p∈Pi

xtpi

 · Ct

i, ∀i ∈ I, ∀t ∈ Ti, (34)

C
t

i = q · qw · (m+ c+ ηi) + q · a · ηi + q · γi+(
H + c+ γi + a · ηi − πt

i

)
· f1 · q, ∀i ∈ I, ∀t ∈ Ti. (35)

At last, constraints (33) combine all the attributes together as in Equation
5 multiplied by the VOT. If a passenger it can not be served within the plan-
ning horizon, the constraints (34) become active and penalize the passenger
with a cost associated to his shortest path realized with the first possible path
outside of the planning horizon (in the next cycle) – constraints (35).

4 Case Study

In order to test the ITTP model, we have selected the network of S-trains in
canton Vaud, Switzerland as our case study. The reduced network is repre-
sented on Figure 5 (as of timetable 2014). We consider only the main stations
in the network (in total 13 stations). A simple algorithm in Java has been
coded, in order to find all the possible paths between every OD pair. The
algorithm allowed maximum of 3 consecutive lines to get from an origin to a
destination. The traveling times have been extracted from the Swiss Federal
Railways’ (SBB) website. The minimum transfer time between two trains has
been set to 4 minutes.
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Line ID From To Departures

S1
1 Yverdon-les-Bains Villeneuve – 6:19 7:19 8:19
2 Villeneuve Yverdon-les-Bains 5:24 6:24 7:24 8:24

S2
3 Vallorbe Palézieux 5:43 6:43 7:43 8:43
4 Palézieux Vallorbe – 6:08 7:08 8:08

S3
5 Allaman Villeneuve – 6:08 7:08 8:08
6 Villeneuve Allaman – 6:53 7:53 8:53

S4
7 Allaman Palézieux 5:41 6:41 7:41 8:41
8 Palézieux Allaman – 6:35 7:35 8:35

S11
9 Yverdon-les-Bains Lausanne 5:26* 6:34 7:34 8:34
10 Lausanne Yverdon-les-Bains 5:55 6:55 7:55 8:55

S21
11 Payerne Lausanne 5:39 6:39 7:38* 8:39
12 Lausanne Payerne 5:24 6:24 7:24 8:24

S31
13 Vevey Puidoux-Chexbres – 6:09 7:09 8:09
14 Puidoux-Chexbres Vevey – 6:31* 7:36 8:36

Table 4 List of S-train lines in canton Vaud, Switzerland

In Table 4, you can find the list of all S-train lines of the canton Vaud
in the timetable of 2014. There are 7 lines that run in both directions. Each
combination of a line and its direction has its unique ID number. Column
“from” marks the origin station of the line as well as column “to” marks its
destination. The columns “departures” show the currently operated timetable
(i.e. departures from the origin of the line) in the morning peak hour (5 a.m.
to 9 a.m.), which is the time horizon used in our study. Trains that did not
follow the cycle (marked with a star *) were set to a cycle value, in order to
not violate the cyclicity constraints (the timetables in Switzerland are cyclic
with a cycle of one hour).

The SBB is operating the Stadler Flirt train units on the lines S1, S2, S3
and S4. In our case study, we have homogenized the fleet and thus use this type
of a train also for the rest of the lines. The capacity of this unit is 160 seats
and 220 standing people. The maximum amount of train units per train is 2
(as SBB never uses more units). The amount of train units per train remains
the same along the line, but it might change at the end stations (we don’t go
into further details as this is the task of the Rolling Stock Problem).

The demand and its distribution has been estimated based on the SBB
report and observation (more details in Appendix A). In total there are 10
077 passengers in the network for the current situation. The coefficients of the
passenger cost are as described in Section 2.

4.1 Results

In all of the experiments, we have run 3 types of the ITTP model: current,
cyclic and non-cyclic. The current model reflects the currently operated SBB
timetable as in Table 4 (the decision variables d have been set to the values in
the table). Subsequently, the cyclic model does not have the departure times
as a hard constraint and thus the CPLEX can look for better values than those
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Fig. 6 Results

of the SBB. The non-cyclic model differs from the cyclic one by removing the
cyclicity constraints. In order to speed up CPLEX, we would first solve the
current version and give its solution as a warm start for the cyclic model and
solve it. Further along, we would give the solution of the cyclic model as a
warm start to the non-cyclic model.

Moreover, we have run the models for several levels of passenger density,
starting from the real-like volume up until the point where the passenger
coverage decreases to a level of 70%. The passenger coverage as a function
of the demand for the current model (the coverage is more or less the same
for the other two models) can be found on Figure 6(a). As it can be seen,
the congestion starts at the amount of cca. 27 000 passengers and that the
coverage goes down almost linearly.

The total passenger cost growth can be observed on Figure 6(b) (we plot
only the current model as the other two models yield similar values). The
passenger cost grows rather exponentially and its function can be split into
two linear parts: non-congested (gradual slope) and congested (steep slope).
This might be useful for practitioners as it would allow them to predict the



passenger cost. Subsequently, we plot the relative difference of cyclic and non-
cyclic timetables as opposed to the current timetable on Figure 6(c). In general,
the cyclic model tends to find slightly better timetables than the current model
(in the congested cases the benefit even dramatically increases). The non-cyclic
timetable, on the other hand, is more flexible and copies the function of the
total passenger cost (Figure 6(b)) and achieves more significant savings. This
is due to the fact that the trains do not have to follow the cyclic frequency and
thus are more densely scheduled, for instance in the most congested case, the
average headway between two consecutive trains on a same line is 22.6 minutes,
with minimum value of 1 minute and maximum value of 238 minutes.

5 Conclusions and Future Work

In this research, we define a new way, how to measure the quality of a timetable
from the passenger point of view and introduce a definition of an ideal timetable.
We then present a formulation of a mixed integer linear problem that can de-
sign the ideal timetables. The new Ideal Train Timetabling Problem fits into
the current planning horizon of railway passenger service and is in line with
the new market structure and the current trend of putting passengers back
into consideration, when planning a railway service.

The novel approach not only designs timetables that fit the best the pas-
sengers, but that also creates by itself connections between two trains, when
needed. Moreover, the output consists of the routing of the passengers and
thus the train occupation can be extracted and be used efficiently, when plan-
ning the rolling stock assignment (i.e. the Rolling Stock Planning Problem).
The ITTP can create both non-cyclic and cyclic timetables.

We test the model on a semi-real data of the S-train network of Canton
Vaud in Switzerland. Our model was able to find a better timetable compared
to the current SBB timetable, where the achieved savings, whilst keeping the
timetables cyclic, were around 3 000 CHF and around 7 000 CHF, in the case
of the non-cyclic timetable. Furthermore, we have focused on exploiting the
passenger congestion. Our study shows that two linear functions, for congested
and uncongested network, can be constructed and thus the passenger cost can
be predicted. Most interestingly, we show that the improvements of the non-
cyclic timetables as compared to the cyclic timetables, are flexible (they copy
the total passenger cost functions) due to the fact that these timetables allow
higher train density. The average train headway of the most congested case
was reduced from the cycle (60 minutes) down to 22 minutes. Moreover the
non-cyclic model was able to achieve around 160 000 CHF of savings even
though the network is dense. These savings are expected to be even higher for
less dense networks. Due to this fact, we would propose to combine the ITTP
with the Line Planning Problem in the future.

In the future work, we will focus on efficient solving of the problem and
extension of the planning horizon, i.e. to be able to solve the problem for a
whole day. This would allow us to explore, if the non-cyclic timetables could



perform better off-peak hours and in the context of the whole day. The new
definition of a quality of a timetable (the passenger point of view) creates a lot
of opportunities for future research: efficient handling of the TOC’s fleet, better
delay management, robust train timetabling passenger-wise or integration with
other phases of the planning horizon.

References

Axhausen KW, Hess S, König A, Abay G, Bates JJ, Bierlaire M
(2008) Income and distance elasticities of values of travel time sav-
ings: New swiss results. Transport Policy 15(3):173 – 185, DOI
http://dx.doi.org/10.1016/j.tranpol.2008.02.001

Ben-Akiva M, Lerman S (1985) Discrete Choice Analysis. The MIT Press,
Cambridge Massachusetts

Caprara A, Fischetti M, Toth P (2002) Modeling and solving the
train timetabling problem. Operations Research 50(5):851–861, DOI
http://dx.doi.org/10.1287/opre.50.5.851.362

Caprara A, Kroon LG, Monaci M, Peeters M, Toth P (2007) Passenger railway
optimization. In: Barnhart C, Laporte G (eds) Handbooks in Operations
Research and Management Science, vol 14, Elsevier, chap 3, pp 129–187

Cordone R, Redaelli F (2011) Optimizing the demand cap-
tured by a railway system with a regular timetable. Trans-
portation Research Part B: Methodological 45(2):430 –
446, DOI http://dx.doi.org/10.1016/j.trb.2010.09.001, URL
http://www.sciencedirect.com/science/article/pii/S0191261510001049

Kanai S, Shiina K, Harada S, Tomii N (2011) An optimal delay management
algorithm from passengers’ viewpoints considering the whole railway net-
work. Journal of Rail Transport Planning & Management 1(1):25 – 37, DOI
http://dx.doi.org/10.1016/j.jrtpm.2011.09.003, robust Modelling of Capac-
ity, Delays and Rescheduling in Regional Networks

de Keizer B, Geurs K, Haarsman G (2012) Interchanges in timetable design of
railways: A closer look at customer resistance to interchange between trains.
In: AET (ed) Proceedings of the European Transport Conference, Glasgow,
8-10 October 2012 (online), AET

Peeters L (2003) Cyclic Railway Timetable Optimization. ERIM Ph.D. series
Research in Management, Erasmus Research inst. of Management (ERIM)

Sato K, Tamura K, Tomii N (2013) A mip-based timetable rescheduling
formulation and algorithm minimizing further inconvenience to passen-
gers. Journal of Rail Transport Planning & Management 3(3):38 – 53,
DOI http://dx.doi.org/10.1016/j.jrtpm.2013.10.007, robust Rescheduling
and Capacity Use
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A Demand Generation

The total amount of passengers in the network has been estimated in the following manner:
the population of Switzerland is 8 211 700 habitants and the population of Canton Vaud is
755 369 habitants, which leads to a rough ratio of 1:10. Applying this ratio to a reported
amount of passenger journeys per day by SBB (in total one million for the whole SBB
network), we arrive to a demand volume of 100 000 passenger journeys per day in canton
Vaud. However not all of these journeys are being realized using S-trains. Since almost all
of the trains in Canton Vaud have to pass through its capital city Lausanne, we can derive
the ratio, between the S-trains and other class trains passing through Lausanne, of 40:60
percent, which leaves us with a 40 000 passenger journeys per day using S-trains in Canton
Vaud. Furthermore, the SBB report provides hourly distribution of passengers on a regional
services from Monday to Friday. According to this report 25 percent of the journeys are
being realized in the morning peak hour, which gives us cca. 10 000 passenger journeys in
the morning peak hour for the S-train network of Canton Vaud.

5 a.m. 6 a.m. 7 a.m. 8 a.m. 9 a.m.

42 208 475 275

Fig. 7 The hourly distribution of the passenger groups

In order to ease the size of the generated lp file(s), the passengers have been split into
1 000 passenger groups (indices it) of varying sizes. These groups have been divided into
hourly rates (Figure 7) according to the SBB report (Swiss Federal Railways (2013)) and
smoothed into minutes using non-homogenous Poisson process. Since we use concept of an
ideal arrival time to the destination, the generated arrival time at the origin has been shifted,
by adding up the shortest path travel time between the OD pair, to the destination of the
passengers.

In order to generate real-like OD flows (index i), we consider the following probabilities:

p(D = 7) = 0.5 – probability of a destination being Lausanne
p(D = 8) = 0.2 – probability of a destination being Renens
p(D = other) = 0.3 – probability of a destination being other than Lausanne or Renens
p(O = any) = 1/12 – probability of an origin being any station (except the already selected destina-

tion)



Since Lausanne is the biggest city in the Canton with all the lines, except the line 13 and
14, passing through it, it has the largest probability of being a destination (many people also
use Lausanne as a transfer point to higher class trains). The city with the second highest
probability is Renens, because it is the closest station to one of the biggest universities in
Switzerland and from the network diagram (Figure 5), we can see the most of the lines
stop there, which suggests high demand. The rest of the stations have equal probability
of being a destination (0.3/11), which is rather small as in the morning peak hour people
travel towards their work/school in big cities. On the other hand, the probability of being
an origin is uniformly distributed and dependent on its destination (origin can not be the
same as a destination). The final probability p(O = o,D = d) for every OD pair can be seen
in Table 6.

In order to reach the total demand, the average size of a group should be ρ = the total
demand divided by the number of groups. In the current scenario ρ = 10 000/1 000 = 10.
In our study, we use 3 different classes of groups: small, medium and large. The size of the
small group is drawn from the uniform distribution U(1, 0.6ρ) and applied to ODs with a
probability p(O = o,D = d) ∈ [0, 1.5) %. The size of the medium group follows U(0.6ρ+1, ρ)
and is applied to ODs with a probability p(O = o,D = d) ∈ [1.5, 3) %. The largest group size
follows a distribution U(ρ+1, 2ρ) and is applied to a probability p(O = o,D = d) ∈ [3, 4.5) %.
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