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Effect of regenerative braking on energy-efficient train
control
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Abstract An important topic to reduce the energy consumption in railways
is the use of energy-efficient train control (EETC). Modern trains allow regen-
erative braking where the released kinetic energy can be reused. This regener-
ative braking has an effect on the optimal driving regimes compared to trains
which can only use mechanical braking. This paper compares the impact of
regenerative braking on the optimal train control strategy on level track. The
energy-efficient train control problem is modelled as an optimal control prob-
lem over distance and solved using a Pseudospectral Method. Three different
braking strategies are compared: mechanical braking only, a combination of
mechanical and regenerative braking, and regenerative braking only. The re-
sult of a case study show that energy savings of at least 28% are possible by
including regenerative braking.
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1 Introduction

Railway undertakings (RUs) are taking various measures to decrease energy
consumption. Energy-efficient train control is an effective mean to reduce op-
erating energy costs and so a lot of research is devoted to this area. Most of
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this research is based on optimal control theory, and in particular Pontrya-
gin’s Maximum Principle (PMP) (Pontryagin et al, 1962) has been applied to
derive the necessary optimality conditions that characterize the optimal con-
trol structure (Howlett, 1996; Khmelnitsky, 2000; Liu and Golovitcher, 2003;
Scheepmaker and Goverde, 2015). The optimal control consists of a sequence
of the optimal driving regimes maximum acceleration (MA), cruising (CR),
coasting (CO), and maximum braking (MB). Given this knowledge of the op-
timal driving regimes, most train control algorithms then aim at finding the
optimal switching points between the regimes.

However, most literature did not consider the possibility for regenerative
braking, but only mechanical braking in which braking energy is transformed
into heat. In regenerative braking, the released kinetic energy, generated by
the engine of the train during braking (using electro-dynamic brakes), is sent
back to the catenary system to be used by other surrounding trains. More
and more trains nowadays have the ability to apply regenerative braking and
therefore its impact on the optimal control strategy becomes highly relevant.

Asnis et al (1985) were the first to incorporate regenerative braking in the
energy-efficient train control problem. They included regenerative braking in
the objective function as a percentage of the total braking force and derived
the necessary conditions for the optimal control strategy. In addition to the
four basic optimal driving regimes, they found a fifth optimal driving regime of
regenerative braking (RB). However, they did not provide an algorithm to find
the optimal sequence and switching times of the driving regimes. Khmelnitsky
(2000) also considered the train control problem with regenerative braking. He
found the same optimal control structure as Asnis et al (1985) and described a
numerical method to solve the problem including varying gradients and speed
limits. In an example he showed that regenerative braking was used to sta-
bilize the cruising speed on downward slopes. Franke et al (2000) simplified
the train resistance function and derived analytical expressions for the various
driving regimes. They solved the problem by discrete dynamic programming
and applied it to a case study. However, they did not provide details on the
optimal sequence of driving regimes, but only mentioned that a main part of
the computed energy saving resulted from the reduced use of the mechanical
brakes. Baranov et al (2011) considered the train control problem consider-
ing both mechanical and regenerative braking in their objective function, and
also included the efficiency of regenerative braking. They derived seven driv-
ing regimes: the three familiar regimes MA, CO and MB (maximum braking
with both mechanical and regenerative braking), three cruising regimes with
either partial traction (CR), partial regenerative braking (RB) or with full re-
generative braking and partial mechanical braking, and finally a regime with
full regenerative braking. An algorithm to construct the optimal control se-
quence of these driving regimes was mentioned as an open question. Rodrigo
et al (2013) considered a discretized optimal train control problem including
efficiency of regenerative braking and they considered both mechanical and re-
generative braking for a metro system. They concluded from their metro sim-
ulations that regenerative braking from higher speeds is more efficient than



coasting, so they replace coasting by regenerative braking. Qu et al (2014)
also considered metro systems and assume fully regenerative braking (no me-
chanical braking). They assume that the optimal driving strategy consist only
of maximum acceleration, cruising and maximum regenerative braking. They
provide an algorithm to calculate the optimal cruising speed and applied it to
a case study of a metro line, but without reporting any energy savings.

In summary, the literature reports different impacts of regenerative brak-
ing on the energy-efficient train control depending on the assumptions and
conditions. Therefore, this paper considers the energy-efficient train control
problem with both mechanical and regenerative braking including efficiency
and considers a case study for a main line local passenger train. In this paper
we assume level track to focus on the structure of the optimal driving strategy
without the influence of gradients.

Section 2 gives the energy-efficient rain control problem without and with
regenerative braking. Section 3 explains the algorithm applied to solve the
train control problem problem, after which the model is applied on a case
study of the Netherlands Railways (NS) in Section 4. Finally, Section 5 ends
the paper with conclusions.

2 Model description

This section describes the energy-efficient train control (EETC) problem and
derives the structure of the optimal driving regimes.

Consider the problem of driving a train between two stops in a given time
with minimal energy consumption. Let X be the stop distance, T the scheduled
running time. We use distance x as the independent variable and time t(x) and
speed v(x) as function of position as the state variables. The control variable
is the mass-specific force u(x). The control variable can be partitioned into a
nonnegative traction force and a negative braking force which are indicated
as u+ = max(u, 0) and u− = min(u, 0), respectively. Note that implicitly
u+ · u− = 0, i.e., if u+ is nonzero than u− = 0 and vice versa, corresponding
to the fact that trains do not give traction and brake at the same time.

Without regenerative braking, the energy-efficient train control problem
can be formulated as (Scheepmaker and Goverde, 2015)

J = min
u

∫ X

0

u+(x)dx (1)

subject to

t′(x) = 1/v (2)

v′(x) = (u− r(v))/v (3)

t(0) = 0, t(X) = T, v(0) = 0, v(X) = 0 (4)

v(x) ∈ [0, vmax], u(x) ∈ [−umin, umax(v(x))]. (5)



The specific traction and braking force u(x) are the forces acting on the train
divided by total mass, including a rotating mass factor. The maximum mass-
specific traction is a non-increasing function of speed. An example of the trac-
tion control-speed diagram with both a constant and hyperbolic part can be
found in figure 1. The maximum braking is assumed to be constant. The mass-
specific resistance force r(v) = r0 + r1v+ r2v

2 is a positive quadratic function
of speed (Davis, 1926).

Fig. 1 Traction control-speed diagram for rolling stock type SLT-6 of NS

This problem can be solved by using optimal control theory. Pontryagin’s
Maximum Principle (PMP) can be applied to derive necessary conditions for
the optimal control (Pontryagin et al, 1962). For this define the Hamiltonian

H(t, v, ϕ, λ, u) = −u+ +
φ

v
+
λ(u− r(v))

v

=

{
(λv − 1)u+ ϕ

v −
λr(v)
v if u ≥ 0

λ
vu+ ϕ

v −
λr(v)
v if u < 0,

(6)

where ϕ(x) and λ(x) are the co-state variables satisfying the adjoint differential
equations

ϕ′(x) = −∂H
∂t

= 0 (7)

λ′(x) = −∂H
∂v

=
λu+ λvr′(v)− λr(v) + ϕ

v2
. (8)



The optimal control û(x) maximizes the Hamiltonian and is therefore obtained
as

û(x) =


umax((v(x)) if λ(x) > v(x) (MA)
u ∈ [0, umax] if λ(x) = v(x) (CR)
0 if 0 < λ(x) < v(x) (CO)
−umin if λ(x) < 0 (MB).

(9)

Clearly, the maximum control û = umax implies maximum acceleration (MA),
zero control û = 0 implies coasting (CO), i.e., rolling with the engine turned
off, and the minimum control û = −umin implies maximum braking (MB).
The singular solution defined by λ(t) = v(t) corresponds to cruising (CR),
i.e., driving at a constant optimal cruising speed using partial tractive ef-
fort û ∈ [0, umax]. The actual optimal control is a sequence of these driving
regimes, where the challenge is to determine the switching points between driv-
ing regimes. The optimal speed-distance profile for a level track is illustrated
in Figure 2, with switching points x1, x2 and x3.
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Fig. 2 Speed profile of a basic energy-efficient driving strategy on a level track with switch-
ing points between driving regimes at x1, x2 and x3

Regenerative braking is included into the model by partitioning the braking
force into regenerative braking ur and mechanical braking ub, with u− =
ur + ub and extending the objective function similar to Asnis et al (1985),
Khmelnitsky (2000) and Baranov et al (2011). The resulting optimal control
problem can then be formulated as

J = min
u

∫ X

0

(u+(x)− ηur(x))dx, (10)



subject to

t′(x) = 1/v (11)

v′(x) = (u+ − ur − ub − r(v))/v (12)

t(0) = 0, t(X) = T, v(0) = 0, v(X) = 0 (13)

v(x) ∈ [0, vmax] (14)

u+(x) ∈ [0, umax(v(x))], ur ∈ [0, ūr], ub ∈ [0, ūb] (15)

where η ∈ [0, 1] is the efficiency of the regenerative braking system, ūr is the
maximum regenerative braking, and ūb is the maximum mechanical braking
with ūr + ūb = umin.

The resulting optimal control structure is now less obvious, since now there
are three control variables with two braking controls. This leads to several op-
tions for braking by a combination of regenerative and mechanical braking,
with the most likely according to Baranov et al (2011) being partial regenera-
tive braking, maximum regenerative braking, maximum regenerative braking
with partial mechanical braking, and maximum braking with both full mechan-
ical and regenerative braking. The next section describes a direct algorithm
to find the optimal control strategy without requiring a priori the structure of
the optimal regimes.

3 Direct solution method

Numerical methods for solving optimal control problems are divided into two
major classes: indirect methods and direct methods (Betts, 2010). In an in-
direct method, first necessary optimality conditions are derived based on e.g.
Pontryagin’s Maximum Principle. Then a solution is found satisfying the nec-
essary optimality conditions which thus indirectly solved the original problem.
This approach has been the preferred method in the train control community,
where the original optimal control problem is translated into a finite optimiza-
tion problem of finding the optimal sequence of optimal driving regimes and
their switching points.

In a direct method, the state and/or control variables of the optimal control
problem are discretized and the problem is transcribed to a nonlinear program-
ming problem (NLP) (Betts, 2010). The NLP is then solved using well-known
nonlinear optimization techniques. In particular, Pseudospectral methods have
been proven themselves in solving optimal control problems efficiently (Rao,
2003). In Pseudospectral methods the control and state variables are param-
eterized by polynomials with exact values at the so-called collocation points.
We applied the Gauss Pseudospectral Method (GPM) that uses orthogonal
collocation at Legendre-Gauss points. For more details, see Rao (2003). In the
train control community direct methods have been used only recently. Wang
et al (2013) solved an optimal train control problem by transcribing it to both
a GPM and a Mixed Integer Liner Programming Problem, and Wang et al
(2015) used GPM to solve an optimal train control problem.



An efficient implementation of GPM is provided in the MATLAB tool-
box GPOPS (General Pseudospectral OPtimal Control Software) (Rao et al,
2010a). We used Radau Pseudospectral method in GPOPS together with the
automatic differentiator INTerval LABoratory (INTLAB) (Rao et al, 2010b;
Rump, 1999).

4 Case study and results

The model called EZ3R model is tested in a case study. This case study and
the results are discussed in this section.

The model is applied between the stations Driebergen-Zeist (Db) and
Maarn (Mrn) in the Netherlands, see figure 3. Only the direction of Db to
Mrn is considered in this paper. A local train of the Netherlands Railways
(NS) (train series 7400) is running on this section stopping at both stations.
The following data is available:

– Total distance between two stations is 7668 m.
– Total available running time according to the timetable of 2015 is 6 min-

utes.
– Maximum allowed speed at the section is 140 km/h.
– Rolling stock type SLT-6 (Sprinter Light Train) of NS is running on this

section.

Fig. 3 Case study of local train series 7400 between Driebergen-Zeist and Maarn (inside
black dotted square)



Besides, the following assumptions are made for modelling the problem:

– Maximum service braking (brake step 4 of SLT) instead of maximum brak-
ing is assumed for the the train, since this is more comfortable for the
passengers and the train conductor in the train.

– No varying gradient profile and curves are used in the model.
– Signalling and ATP (Automatic Train Protection) system are not taken

into account.
– Only the total traction energy consumption at the pantograph of a single

train is considered, so no transmission losses of the energy (like regenerated
energy) are taken into account and no other surrounding trains are taken
into account.

The first step taken is to compare the model results generated by the EZ3R
model with the EZR model. This is done by comparing both the time-optimal
(TO) or technical minimum running time (i.e. a running a train as fast as
possible from one station to the next station) and the energy-efficient train
control (EETC) of both models. The EZR model is already calibrated, vali-
dated and verified and is in accordance with the results from optimal control
theory (Scheepmaker and Goverde, 2015). Therefore, if the EZ3R model re-
sults are in line with the results of the EZR model, the EZ3R model is assumed
to be plausible for further application.

The first important result of the model is that the calculation speed of the
EZ3R model (5 s) is much faster than the the EZR model (122 s) (computed
at a laptop with a 2.1 GHz processor and 8 GB RAM)).

Secondly, the model results are analyzed, which are visualized in figure
4. The results show that in general the EZ3R model generates results which
are in line with the EZR model. However, the main differences exists in the
energy consumption. For TO the EZ3R model calculates 0.7% higher energy
consumption than the EZR model. For the EETC this is even higher, i.e. 2.5%.

Based on this analysis, it is concluded that the EZ3R model is a good
alternative to the EZR model and the model results are comparable. Therefore,
the EZ3R model is extended by including regenerative braking (RB), in order
to investigate how RB will change the energy-efficient driving strategy. Three
different models are compared based on the rolling stock data of NS:

1. EETC with only MeB (mechanical braking).
2. EETC with both MeB and regenerative braking (RB) (normal situation

for SLT trains of NS).
3. EETC with only RB.

For the first two variants of the model, the total maximum braking force
is the same (285.8 kN). This is because the electro-dynamic brakes can also
be applied if the train cannot apply the regenerated energy (burn the regener-
ated energy as heat like mechanical braking). For the third variant, the total
maximum braking force is less than the other variants (150 kN), since now the
mechanical brakes are not applied.

The model results in GPOPS are generated within 20 s for the different
braking variants. The results are displayed in figure 5. From the graphs the



Fig. 4 Comparison of the time-optimal (TO) and energy-efficient train control (EETC)
driving strategies between the EZ3R model and the EZR model (left speed-distance graph
and right energy-distance graph)

effect of bang-bang control in GPOPS becomes clear for the driving strategies
including RB. The fluctuation is clearly visible during the cruising driving
regime. The traction control shows a lot of fluctuating peaks during this phase,
which indicates that GPOPS has difficulties in calculating this bang-bang
control during cruising.

Moreover, the main differences between EETC with MeB or RB become
clear in the figure. If only MeB is applied, the train is accelerating to a higher
speed than when RB is (also) applied. Secondly when RB is included, a cruising
phase with a lower maximum speed is applied compared to MB only. The speed
at which braking starts with RB is also higher than with only MeB, since RB
now generates energy. It can be stated that the more energy that can be
generated by RB, the higher the speed at the beginning of the braking phase
will be. However, the maximum speed will always be lower than with MeB
only, since a cruising phase with a lower maximum speed is included with RB.

The differences between EETC with MeB & RB and only RB are minimum.
The energy consumption of only RB is slightly higher (1%) which can be
explained by the fact that the available braking force with only RB is lower
than combining both MeB and RB together. This means the train with only
RB starts braking earlier and has a slightly higher cruising speed compared
to the braking strategy with MeB & RB.

The results indicate that energy savings of 29.5% can be achieved by com-
bining MeB and RB in the EETC compared to EETC with only MeB. The
energy savings with only RB are a slightly lower, i.e. 28.8%.

So it can be concluded that including regenerative braking in EETC has
a big influence on the extra decrease in total traction energy consumption.
The effects of varying gradients (and varying speed limits) might even have
a bigger effect on the total traction energy consumption for EETC with RB,
since during downwards slopes RB can be applied to regenerate energy and
absorb the potential energy. This will be a topic for future research.



Fig. 5 Comparison between the energy-efficient train control (EETC) driving strategies
with only mechanical braking (MeB), both MeB and regenerative braking (RB) or only RB
of the EZ3R model (left speed-distance graph and right energy-distance graph)

5 Conclusion

In this paper an optimal train control problem has been considered in which
total traction energy is minimized by including the effects of regenerative brak-
ing (RB). To compare the different energy-efficient train control (EETC) driv-
ing strategies with mechanical braking (MeB) and/or RB, an optimal control
problem has been formulated and solved by the Gauss Pseudospectral Method.

The model has been applied in a case study in three scenarios: no regenera-
tive braking, both regenerative and mechanical braking and only regenerative
braking. The regenerative braking on level track had an impact on the op-
timal driving strategy. With regenerative braking the optimal cruising speed
is lower than without, the coasting regime is shorter, and the braking regime
starts earlier. This led to an extra energy saving of at least 28%. Based on this
research the main conclusion is that regenerative braking does influence the
energy-efficient driving strategy and leads to lower energy consumption.

In future research the model will be extended to include varying gradients
and speed limits, as well as signalling constraints.
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