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Abstract Transit network design problem (TNDP) deals with devising an ef-
ficient set of routes for public transport. In this paper we propose Guided Ge-
netic Algorithm With Elitism (GGAWE), a hybridization of two metaheuristic
techniques to solve TNDP. To validate our proposed approach, we have con-
ducted extensive experiments on both benchmark data and real network data.
Our experimental results reveal the superiority of our approach over the state
of the art.
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1 Introduction

Efficient public transport systems are in high demand in every corner of the
world. As a result significant research effort has been given to design optimal
transport systems that involve maximizing the number of satisfied passengers,
minimizing the total number of transfers and minimizing the total travel time
of all served passengers. Several studies have suggested that computer based
tools should be employed more for designing and evaluating public transit
networks (Nielsen (2005); Zhao and Gan (2003)).

In this paper, we study the transit routing problem and present a hybrid
metaheuristics framework for solving it. We introduce Guided Genetic Algo-
rithm With Elitism (GGAWE) for the transit network design problem, that
allows us to concentrate on the key issues of minimizing the travel time and
the number of transfers simultaneously. For the information, authors have re-
cently introduced Genetic Algorithm With Elitism (GAWE) and its variant
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(Nayeem et al (2014)), but GGAWE is different from it. GGAWE is totally
a novel hybrid technique where the problem of getting stuck in local optima
has been overcome. Very briefly GGAWE focuses on certain edges of a route
set which tend to cause local optima and tries to avoid them. We show the
effectiveness of our schemes, by comparing our results with previously pub-
lished results (Nayeem et al (2014); Nikoli and Teodorovi (2013)) on some
benchmark instances.

The rest of this paper is organized as follows. A brief literature review is
given in section 2. Section 3 formally defines the problem. Proposed solutions
to the problem are given in section 4. Experimental results and analyses are
provided in section 5. Finally, we briefly conclude in section 6 with some future
research directions.

2 Literature Review

Since TNDP is a hard optimization problem, a number of heuristic and meta-
heuristic based approaches have been proposed in the literature. We start by
reviewing a heuristic algorithm proposed by Mandl to find a set of the best
transit routes (Mandl (1979)). He developed a solution in two stages: first a
feasible set of routes was generated, and then heuristics were applied to im-
prove the quality of the initial route set. His proposed network is used as one
of the benchmark networks in the literature.

A few review and survey papers have been published in the literature that
documents and discusses the results in the literature from different perspec-
tives. Kepaptsoglou and Karlaftis (2009) presented and reviewed research re-
sults in the area of transit route network design problem. Design objectives,
operating environment parameters and solution approaches are especially an-
alyzed in the paper. The review of Derrible and Kenneday (2011) is devoted
to the applications of the graph theory in transit network design. Schoebel
(2012) made a review of the various bus, railway, tram, and underground line
planning models.

Baaj and Mahmassani (1995) described and implemented a heuristic route
generation algorithm for the route network design. Generally it determines an
initial set of skeletons and expands them to form transit routes, which heavily
depends on the travel demand matrix. On the other hand, Charkroborty and
Dwivedi (2002) took an approach for encoding by listing the nodes explicitly
in their genetic algorithm. This work was enhanced further by Chakroborty
(2003) to cover scheduling as well as routing.

Fan and Machemehl (2008) considered the design of public transporta-
tion networks in the case of variable demand. The authors developed a multi-
objective model. Their solution methodology was based on the tabu search
method. Later, Fan and Mumford (2010) proposed a model of the urban transit
routing problem that evaluated candidate route sets. Their proposed approach
used hill-climbing and simulated annealing techniques.



Recently, Nikoli and Teodorovi (2013) have introduced swarm optimization
namely bee colony optimization algorithm in TNDP. Following up the work
of Nikoli and Teodorovi, Nayeem et al (2014) have proposed two variations of
genetic algorithm to solve the TNDP which to the best of our knowledge is
the best result in the literature to date.

3 Problem Definition

We define the Transit Network Design Problem (TNDP) following the termi-
nologies of Nikoli and Teodorovi (2013). Here, a road network is described by
the graph G = (N,E), where N is the set of nodes representing the bus stops
and E is the set of edges representing the street segments. A route used by
the transit passengers is described by a path in the graph.

We have a demand matrix denoted by dij , which represents the number
of trips per time unit between node i and node j. We also denote by D the
origin-destination matrix (O-D matrix) as follows:

D = {dij |i, j ∈ [1, 2, ..., |N |]} (1)

We assume that the given road network is connected and undirected and there
are sufficient vehicles on each route to ensure that the demand between every
pair of nodes is satisfied. We also know the travel time matrix for the road
network denoted by trij , which represents the in-vehicle travel time between
the node i and the node j. By TR, we denote the travel time matrix:

TR = {trij |i, j ∈ [1, 2, ..., |N |]} (2)

The main indicator that we use to describe the level of transit service is
the total travel time spent by the users of the transit service. We express the
quality of the solution generated in minutes. We calculate the total travel time
T of all passengers in the network in the following way:

T = TT + w1TTR+ w2TU, (3)

where,
TT is the total in-vehicle time of all served passengers,
TTR is the total number of transfers in the network,
TU is the total number of unsatisfied passengers (we assume that the

passenger is unsatisfied when she/he has to make more than two transfers
during the trip),

w1 is the time penalty for one transfer (5 mins),
w2 is the time penalty for one unsatisfied passenger (Optimal Average

Travel Time (ATT) + 50 mins).
Therefore, the fitness of a route set is 1

T . So our objective is to find a set of
routes R such that T is minimized. In short, we can define the transit network
design problem in the following way: For a given set of n nodes, known origin-
destination matrix D that describes demand among these nodes, and known
travel time matrix TR, generate a set of transit routes which we call route set
on a network such that the total travel time T of all passengers is minimized.



4 The proposed solution

In this work, we have used hybridization of two metaheuristic techniques
Guided Local Search (GLS) and Genetic Algorithm With Elitism (GAWE)
which we call the Guided Genetic Algorithm With Elitism (GGAWE). We
have customized the traditional implementations to match with our designed
approach for solving TNDP. As will be reported later, the smooth exploitative
nature of GAWE combined with the exploration force of GLS, successfully
results in quite high quality route sets.

GLS, introduced by Voudouris and Tsang (1995), is basically a variation of
hill-climbing that tries to identify solution components which appear too often
in local optima, and penalizes later solutions which use those components so as
to force exploration elsewhere. GGAWE is a population based method which
takes the idea of maintaining diversity of route sets in the population from
GLS but instead of using hill-climbing (as is the case in GLS) it uses GAWE
for producing new route sets. GAWE is an exploitative version of genetic
algorithm where the initial route set is built using a greedy algorithm and
gradually improved with specially designed mutation and crossover operators
(Nayeem et al (2014)).

For transit network designing we have treated the edges of the road network
as components. We have maintained a matrix of edge penalties keeping records
of how often each edge has appeared in high-quality routes. We denote by pij
the penalty of edge between i and j, eij . Instead of using fitness we have used
adjusted fitness which takes both fitness and the edge penalties into account.
Given a route set R, adjusted fitness of R is defined as follows:

AdjustedF itness(R) = Fitness(R)− β
∑

∀ eij∈E found in R

pij (4)

Thus GGAWE is looking for route sets both of high quality but also ones
which are relatively novel in the sense that it tries to use edges which havent́
been used much in high quality routes before. The parameter β determines
the degree to which novelty figures in the final fitness computation.

After several generations of modified GAWE in this adjusted fitness space,
GGAWE then takes its current best route set S from the current population,
which is presumably at or near a local optimum, and increases the penalties
of certain edges which can be found in this route set. To be likely to have its
penalty increased, an edge must have three qualities. First, it must appear in
Sthat is, it is partly responsible for the local optimum and should be avoided.
Second, it will tend to have lower passenger demand and higher travel time:
we wish to move away from the least important edges in the route set first.
Third, it will tend to have lower penalty. This is because GGAWE does not
want to penalize the same components forever.

To determine the edges whose penalties should be increased, GGAWE first
computes the penalizability of each edge eij in S with current penalty pij as
follows:



Penalizability(eij) =
trij

(1 + pij)(1 + dij)
(5)

We normalize the Penalizability of each edge eij using the maximum and
minimum penalizability of all edges found in S as follows:

Penalizability(eij)−Minimum Penalizability

Maximum Penalizability −Minimum Penalizability
(6)

GGAWE then picks all those edges whose normalized penalizability is
greater than 0.8 and increments their penalties by 1.

If we let the edge penalties keeping on piling up, it might happen that
an edge once responsible for causing local optima is always banned from par-
ticipating in the routes even if it is no more responsible for local optima at
some later part. So GGAWE also decreases all the edge penalties a bit at each
iteration.

To sum up, GGAWE starts with a global population of initial route sets.
At each iteration it applies modified GAWE on the global population for some
generations using adjusted fitness. Then GGAWE adjusts the current edge
penalties by increasing penalties for edges commonly found in local optima
and decreases all edge penalties at a fixed rate. The full algorithm is presented
in Algorithm 1.

Note that in GGAWE we have employed a modified version of GAWE
(Nayeem et al (2014)). Now we summarize the modifications we have made
in previous implementation of GAWE (Nayeem et al (2014)) to suit with the
current frame. Here we keep on counting the number of successive generations
where the fitness of the solution that is best so far is not improved. If this
count reaches a predefined parameter we halt GAWE and replace m number
of randomly selected solutions from the current population with our extracted
initial solution. Here m is a random number between [0−2]. Now the selection
procedure considers the adjusted fitness of the route set. GAWE uses two
different mutations namely small modification and big modification. In small
modification, it expands or shortens a route by one edge. While expanding a
route, it selects one of the terminals and adds a new bus stop randomly chosen
from the nodes adjacent to the selected terminal. But in modified GAWE
(Algorithm 2), while expanding a route, we now select the new bus stop to
add from the adjacent nodes using roulette wheel selection with the probability
defined as inverse of edge penalty. Thus we encourage adding edges with lower
penalties.

5 Experimental Results

To conduct our experiments, we have used a gcc-g++3.4.5 compiler with Par-
adisEO2.0 framework in Code::Blocks13.12 IDE and Netbeans 7.4 IDE. We



Fig. 1 Algorithm 1: Guided Genetic Algorithm With Elitism (GGAWE)
popSize← desired population size
eliteSize← desired number of eilte individuals
routeSetSize← number of routes in the individual
t← tournament size for fitness
Pms ← probability of doing small modification in Mutation . high
Pdelete ← probability of deleting the selected terminal in small modification
maxGen← maximum number of generations for each run of GAWE
stableCount← maximum number of successive generations in each run of GAWE where
the best fitness is same
maxIter ← maximum number of iterations of GGAWE
p← matrix of edge penalties, initially zero
rd ← decreasing rate of edge penalty
β ← significance of edge penalties in adjusted fitness
P ← {}
Best← ∅ . keeps the best so far route set according to actual fitness
S ← ∅ . keeps the best so far route set according to adjusted fitness
for popsize times do

P ← P ∪ {InitialRouteSet(routeSetSize)}
end for
for iter ← 1 to maxIter do

Call Modified GAWE (Algorithm 2)
for each edge eij appearing in S do

Calculate Penalizability(eij)
Keep maximum penalizability in maxPen and minimum penalizability in minPen

end for
for each edge eij appearing in S do

. Penalize the top penalizable edges by increasing their penalties

if
Penalizability(eij)−minPen

maxPen−minPen
> 0.8 then

pij ← pij + 1
end if

end for
for each edge eij do

pij ← (1− rd)pij
end for
iter ← iter + 1

end for
return Best

have used two Desktop PCs and one Labtop PC of 3.3 GHz Intel Core i3 pro-
cessor with 8 GB RAM, 3.5 GHz Intel Core i7 processor with 8 GB RAM and
2.5 GHz Intel Core i5 processor with 6 GB RAM respectively.

To validate the expected improvement by the proposed hybrid technique,
we have compared the performance of our algorithm with other methods found
in the literature in terms of the performance metrics shown in Table 1.

The values of the performance metrics d0, d1, d2 and dun collectively show
the quality of a route set. For any route set, the summation of values of these
four metrics equals to 1. At first, a route set tries to meet the passenger demand
as much as possible without any transfer; then it tries to meet the remaining
demand as much as possible with only one transfer; then it tries to do the
same for the remaining demand with two transfers; and finally, the rest of the
demand are left as unsatisfied. A good route set always tries to meet the most



Fig. 2 Algorithm 2: Modified GAWE
stableCount← 0
prevBest← Best
for gen← 1 to maxGen do

for each individual Pi ∈ P do
AssessAdjustedFitness(Pi)
if Best = ∅ or Fitness(Pi) > Fitness(Best) then

Best← Pi

end if
if S = ∅ or AdjustedFitness(Pi) > AdjustedFitness(S) then

S ← Pi

end if
end for
Q ← the eliteSize individuals in P with highest AdjustedFitness, breaking ties at

random
for (popSize− eliteSize)/2 times do

Parent Pa ← TournamentSelection(P ) . Using AdjustedFitness
Parent Pb ← TournamentSelection(P ) . Using AdjustedFitness
Children (Ca, Cb)← UniformCrossover(Copy(Pa), Copy(Pb))
Q← Q ∪ {Mutation(Ca), Mutation(Cb)}

end for
P ← Q
if AdjustedFitness(prevBest) = AdjustedFitness(Best) then

stableCounter ← stableCounter + 1
if stableCounter = stableCount then

Randomly Shuffle P
randV alue← pick a random number uniformly between 0 to 2
for i← 0 to randV alue− 1 do

P ← P − Pi

P ← P ∪ {InitialRouteSet(routeSetSize)}
end for
Break

end if
else

prevBest← Best
stableCounter ← 0

end if
gen← gen+ 1

end for

Fig. 3 Mandl’s Swiss Road Network.



Table 1 Performance Metrics

d0 the percentage of demand satisfied without
any transfers

d1 the percentage of demand satisfied with
one transfer

d2 the percentage of demand satisfied with
two transfers

dun the percentage of demand unsatisfied
ATT average travel time in minutes per tran-

sit user (mpu). This travel time includes
transfer waiting times, and transfer time
that is equal to 5 min per passenger

of the passenger demand with the least number of transfers. The effect of the
distribution of passenger demand among d0, d1, d2 and dun is summarized by
the value of ATT as it considers the time wasted by the transfers. Therefore,
it shows the overall quality of a route set. So if we have two route sets having
very close values of d0, d1, d2 and dun, we can compare them using ATT , which
should be lower for a better solution.

Nayeem et al (2014) had another version of genetic algorithm named GAWIP
where at each generation the population size is increased by the number of
elite individuals. Although GAWIP can produce high quality solutions in case
of small bus networks such as Mandl’s 15 node Swiss network, its running time
is huge. As a result, GAWIP is not suitable for real bus networks where there
are numerous nodes and edges. So we have decided to omit GAWIP from our
experimental study here.

At first we show our experimental results in case of Mandl’s road network
(15 nodes and 20 edges) which is currently the only benchmark available (see
Figure 3). Here we have compared the performance of our best final solution
to other previous works considering four situations: 4 routes, 6 routes, 7 routes
and 8 routes in each route set. The parameter values of our Algorithm 1, used
for all these experiments are shown in Table 5. The comparison is shown in
Table 2. We can see that the results obtained by GGAWE is very competitive
with GAWE and clearly better than other previous works.

Parameter Value
popSize 18
eliteSize 2

t 10

Pswap
1

routeSetSize
Pms 0.7
Pdelete 0.4
maxGen 20
maxIter 20

stableCount 15
β 0.8



Table 2 The comparison among the final solutions generated by our approach and the
previous approaches for Mandl’s route network.
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4 d0 69.94 N 72.95 86.86 93.26 92.1 96.14 96.40
d1 29.93 N 26.92 12 6.74 7.19 3.47 3.15
d2 0.13 N 0.13 1.14 0 0.71 0.39 0.45
dun 0 N 0 0 0 0 0 0
ATT 12.9 N 12.72 11.9 11.37 10.51 10.49 10.50

6 d0 N 78.61 77.92 86.04 91.52 95.63 98.39 98.39
d1 N 21.39 19.68 13.96 8.48 4.37 1.61 1.61
d2 N 0 2.4 0 0 0 0 0
dun N 0 0 0 0 0 0 0
ATT N 11.86 11.87 10.3 10.48 10.23 10.14 10.13

7 d0 N 80.99 93.91 89.15 93.32 98.52 99.17 99.49
d1 N 19.01 6.09 10.85 6.36 1.48 0.83 0.51
d2 N 0 0 0 0.32 0 0 0
dun N 0 0 0 0 0 0 0
ATT N 12.5 10.69 10.15 10.42 10.15 10.07 10.07

8 d0 N 79.96 84.73 90.38 94.54 98.97 99.86 99.87
d1 N 20.04 15.27 9.62 5.46 1.03 0.14 0.13
d2 N 0 0 0 0 0 0 0
dun N 0 0 0 0 0 0 0
ATT N 11.86 11.22 10.46 10.36 10.09 10.03 10.03

To show the applicability of GGAWE in real world, we have also per-
formed several experiments with three real bus networks namely Mumford1,
Mumford2 and Mumford3 (Mumford (2013)) developed based on information
manually extracted from bus route network maps for three real cities. The
properties of those real networks are shown in Table 5.

For the sake of comparison with previous works we have run GGAWE for
a total of 200 generations (maxGen 20, maxIter 10) and reported the average
results over 20 independent runs for each network. All the other metrics of
Table 5 have been kept same. In case of these large networks we find that
GGAWE is clearly ahead of GAWE and the work of Mumford (2013) (see Ta-
ble 6). We have found that GGAWE works well for bus networks with a large
number of nodes and edges. This might be due to the fact that GGAWE en-



Table 3 Comparison among GLS, GAWE (Nayeem et al (2014)) and GGAWE for Mandl’s
route network.
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d2 0.32 1.12 4.50 0.39 1.06 4.24 0.45 0.76 1.09 1.10E-05
dun 0 0 0 0 0 0 0 0 0 0
ATT 10.39 10.72 11.03 10.49 10.5 11.12 10.50 10.50 10.75 1.04E-02
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d0 95.95 93.62 90.82 98.39 97.5 96.08 98.39 97.48 96.47 2.68E-05

d1 3.98 5.82 5.20 1.61 2.49 3.92 1.61 2.48 3.15 2.29E-05
d2 0.07 0.36 0 0 0.01 0 0 0.04 0.38 1.21E-06
dun 0 0.20 3.98 0 0 0 0 0 0 0
ATT 10.27 10.42 10.21 10.14 10.17 10.22 10.13 10.17 10.25 8.76E-04
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d0 96.08 95 93.96 99.17 98.35 97.24 99.49 98.66 97.37 2.91E-05

d1 3.92 4.74 5.52 0.83 1.65 2.76 0.51 1.34 2.63 2.91E-05
d2 0 0.26 0.52 0 0 0 0 0 0 0
dun 0 0 0 0 0 0 0 0 0 0
ATT 10.26 10.31 10.38 10.07 10.11 10.16 10.07 10.10 10.17 7.55E-04

M
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)

d0 97.11 95.53 93.39 99.87 99.28 98.65 99.87 99.31 98.46 1.53E-05

d1 2.76 4.35 6.61 0.13 0.72 1.35 0.13 0.69 1.54 1.53E-05
d2 0.13 0.12 0 0 0 0 0 0 0 0
dun 0 0 0 0 0 0 0 0 0 0
ATT 10.19 10.27 10.38 10.03 10.07 10.10 10.03 10.06 10.09 3.05E-04

forces exploration implicitly by adjusting the edge penalties which ultimately
affects the operation of our selection and mutation operators. This in turn
encourages choosing novel edges in the route set. But to reveal their strength
we need to provide them enough options to choose from. So when the network
contains a large number of edges, these operators get the opportunity to come
into action as a result GGAWE seems to make the difference. Finally we have
summarized the improvement of GGAWE over GLS and GAWE in Table 3



Table 4 Comparison among GLS, GAWE (Nayeem et al (2014)) and GGAWE for real bus
networks.
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ATT 26.45 26.65 26.84 23.64 23.96 24.35 23.37 23.60 23.47
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d0 28.82 27.56 26.63 34.09 32.53 31.4 35.63 33.92 33.03

d1 58.96 58.46 60.73 61.94 93.53 63.64 61.51 63.01 63.85
d2 6.65 7.43 7.12 3.9 3.9 5.0 2.86 3.07 3.12
dun 5.57 6.55 5.52 0 0 0 0 0 0
ATT 27.74 27.87 28.10 26.58 26.63 26.64 26.45 26.45 26.43

M
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d0 25.79 24.79 23.58 30.20 29.15 28.07 31.47 30.29 29.07

d1 55.40 53.40 55.17 63.83 64.31 64.03 63.17 64.29 64.97
d2 9.40 9.22 11.19 6.0 6.5 7.9 5.36 5.42 5.96
dun 9.41 12.59 10.06 0 0 0.02 0 0 0
ATT 30.86 30.92 31.28 29.47 29.65 29.75 29.43 29.41 29.50

Table 5 Properties of Real Data Sets.

Data set Location No. of Nodes links No. of Routes
Mumford1 Yubei 70 210 15
Mumford2 Brighton 110 385 56
Mumford3 Cardiff 127 425 60



Table 6 Comparison of our results with Mumford (2013) and GAWE (Nayeem et al. 2014).

Mumford1 Mumford2 Mumford3

M
et

ri
cs

M
u

m
fo

rd
(2

0
1
3
)

N
a
y
ee

m
et

a
l

(2
0
1
4
)

G
G

A
W

E

M
u

m
fo

rd
(2

0
1
3
)

N
a
y
ee

m
et

a
l

(2
0
1
4
)

G
G

A
W

E

M
u

m
fo

rd
(2

0
1
3
)

N
a
y
ee

m
et

a
l

(2
0
1
4
)

G
G

A
W

E
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d1 52.42 56.37 55.56 51.29 63.53 63.01 50.97 64.31 64.29
d2 10.71 5.88 4.12 16.36 3.93 3.08 18.76 6.5 5.42
dun 0.26 0 0.01 1.44 0 0.1 2.81 0 0.38
ATT
(mins)

24.79 23.96 23.6 28.65 26.63 26.45 31.44 29.65 29.41

and Table 4. Here we can see that GGAWE produce better effect than the
effects of GLS and GAWE. We have also reported V ariance in Table 3 for
GGAWE. As the V ariance is very small for each of the case, it seems that
there are very little differences among the metrics’ value of GGAWE.

6 Conclusion

In this paper, we have proposed GGAWE which is a hybridized but novel ap-
proach. It uses the explorative feature of GLS and combines with the elitism
characteristics of GAWE as hybridization. We have shown extended experi-
mental results on our proposed algorithms for both benchmark data and real
public bus networks. We have also shown that our experimental results are
competitive with previous work of Nayeem et al (2014) and better than all
other previous methods. The proposed algorithm can generate high quality
solutions. We found that our GGAWE is best suited for large networks with
many edges.

We are also considering other objectives for future research to this multi-
objective transit network design problem such as traffic jam, performance of
vehicles, alternative route, operator cost, etc.
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