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Optimizing Crew Schedules with Fairness Preferences
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Abstract Railway crew scheduling deals with generating duties for train
drivers to cover all train movements of a given timetable. The objective is
to minimize the overall costs associated with a crew schedule, which includes
workforce costs, hotel costs, etc. A cost minimal schedule often contains du-
ties that are unpopular to train drivers, and these unpopular duties are often
unevenly distributed among crew depots. At the company that motivated our
research, train drivers dislike hotel rests, for example. Currently, some crew de-
pots operate large numbers of duties with hotel rests, while others do not have
any duties with hotel rests at all. This situation is perceived as unfair. Train
drivers prefer schedules with fewer and more evenly distributed unpopular du-
ties across crew depots. In this paper, we define and measure unpopularity
and (un)fairness in a railway crew scheduling context. We integrate fairness
conditions into a column generation based solution algorithm and analyze the
effects of increased fairness on the unpopularity of a schedule. Our method
has been applied to test instances at a large European railway freight carrier.
We were able to significantly improve schedule fairness, while schedule costs
were only marginally affected. In most cases, increased fairness also induced a
reduction in the number of unpopular duties in the schedule.
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1 Introduction

Railway crew scheduling deals with generating train driver duties for a given
train schedule such that all work regulations are met and the resulting schedule
costs are minimized. Train drivers are located at crew depots where duties start
and end. The number of train drivers assigned to depots varies, and the crew
schedule optimization must take the capacity limits at the depots into account.

Typically, some duties of a crew schedule have properties that are unpop-
ular to train drivers. For example, train drivers dislike hotel rests within a
duty and prefer returning to their home depot after a one-day duty. The aver-
sion towards hotel rests is especially strong in the freight railway business,
where intensified train operations at night times often require hotel rests at
day times.

The second main source of unpopularity are early morning duties, i.e.,
duties that start in the early morning hours and require driving ”into the day”.
Such duties are conflicting with the train driver’s circadian rhythm. In the
short term, this can result in increased fatigue during work and hence increased
risk of mistakes and accidents as well as smaller productivity (Akerstedt, 2003;
Folkard and Tucker, 2003). In the long term, working hours that conflict with
the circadian rhythm can cause severe health issues (Harrington, 2001). The
company that motivated this research considers early morning duties starting
between midnight and 4 a.m. as most conflicting with the circadian rhythm.

In a cost-optimal schedule, unpopular duties are generally unequally dis-
tributed between the crew depots. At crew depots with a higher-than-average
fraction of unpopular duties, the schedule is perceived as unfair. This decreases
the job satisfaction of the train drivers and can result in lower job performance,
bickering, and increased absenteeism (Bard and Purnomo, 2005). A high per-
ception of unfairness has also been shown to increase turnover rates of em-
ployees (Smet et al, 2013) and to trigger labor strikes with severe economic
impacts (Abbink et al, 2005).

In this paper, we analyze the integration of fairness considerations into
a crew scheduling optimization approach that has been implemented at a
major European railway freight carrier. In the following, we will refer to this
company as Freightrail. We analyze the effects of fairness constraints on the
total unpopularity of a crew schedule. To solve problems of reasonable size, we
use a heuristic solution approach. The approach is based on column generation
and generates solutions that are within one percent of optimality.

In Section 2, we describe the situation at Freightrail. In Section 3, we
provide an overview of research on fairness that is relevant for crew scheduling.
In Section 4, we describe the basic solution algorithm for solving the railway
crew scheduling problem and show how we incorporated fairness in the model.
In Section 5, we evaluate our approach using data from Freightrail and analyze
the effect of fairness considerations on the unpopularity, fairness, and cost
of the crew schedule. In Section 6, we summarize our findings and provide
directions for future research.



2 Problem Description

In the freight railway business, crew scheduling is one of a series of planning
steps necessary to operate trains (see Cordeau et al, 1998, for an overview
of planning problems and corresponding optimization models within railway
operations). Once trains have been assembled, timetables have been fixed, and
engines have been assigned to the trains, the crew scheduling problem consists
of generating duties for the train drivers such that all work regulations and
capacities are met and the resulting schedule has minimal cost. Real-world
problem instances often require generating duties for thousands of train drivers
located at hundreds of depots and operating tens of thousands of trains. Due
to the large problem dimension, the assignment of the generated duties to
individual train drivers is performed in a separate, subsequent planning step
(”crew rostering”) which is out of the scope of this paper (see Caprara et al,
1998, for an example of crew rostering in the railway context).

In crew scheduling, a train denotes a transportation order between two
locations. For planning purposes, a train is divided into trips, i.e., segments of
scheduled train movements between two consecutive transfer points that must
be serviced by the same train driver. The railway crew scheduling problem
is commonly formulated as a set covering model with side constraints: Let
T denote the set of trips. A duty d is a sequence of trips in T . d is feasible
if it fulfills a set of legal, union, and company requirements, which regulate,
e.g., minimum connection times, the length and position of breaks, maximum
working times, etc. Let D denote the set of all feasible duties for the set T of
trips, and let atd = 1 if trip t is contained (covered) in d (atd = 0 otherwise).
For each feasible duty d, a parameter cd reflects the costs associated with the
duty (worktime costs, costs for using public transport or taxi connections, and
hotel accommodation). Let xd = 1 if duty d is part of the solution schedule
and xd = 0 otherwise. A duty d is assigned to a crew depot j ∈ J from which
the train driver starts and ends the duty. Let bjd = 1 if d is assigned to depot
j and bjd = 0 otherwise. At crew depot j, kj train drivers are available. The
basic set covering formulation (SC) of the railway crew scheduling problem is

minimize
∑
d∈D

cdxd +
∑
j∈J

ĉj ŷj (1)

subject to
∑
d∈D

atdxd ≥ 1 ∀ t ∈ T (2)∑
d∈D

bjdxd − ŷj ≤ kj ∀ j ∈ J (3)

xd ∈ {0, 1} ∀ d ∈ D (4)

ŷj ≥ 0 ∀ j ∈ J (5)

Constraints (2) guarantee that each trip is covered by at least one duty. Con-
straints (3) are the depot capacity constraints. Exceeding a depot’s capacity
kj is captured in the penalty variable ŷj and penalized in the objective Func-
tion (1) with a penalty cost factor of ĉj .



The set D can contain millions of feasible duties. Common solution ap-
proaches resort to a column generation approach, which iterates between solv-
ing the model (SC) restricted to a subset of all feasible duties and generating
some duties that can improve the current schedule (see Kroon and Fischetti,
2001; Caprara et al, 2007, for examples of implementations at the Dutch and
Italian railways, respectively).

In practice, duties often contain properties that are unpopular to train
drivers. In the freight railway business, there are two main types of unpopular
properties: duties starting in the early morning and duties that require hotel
rests.

Because many freight trains are operated during night time, train drivers
often start their duty in the late evening or early morning hours. At Freightrail,
train drivers receive allowances for working at night times, and the total num-
ber of working hours at night times is limited by the labor contract. Working
in night shifts that start in the late evening is widely accepted by train drivers.
Duties that start in the early morning, on the contrary, are unpopular. Train
drivers receive lower allowances for such duties than for duties that start in
the evening. Additionally, there is scientific evidence that early morning shifts
particularly interfere with the human circadian rhythm. Early morning shifts
negatively affect the length of prior sleep (e.g., Knauth, 1993; Akerstedt,
2003). Some authors explain this effect with social demands in the late af-
ternoon and early evening hours, which encourages morning shift workers to
go to bed too late (Rosa et al, 1996). Other researchers attribute the shorter
sleep length prior to an early morning shift to the circadian acrophase, i.e.,
the period at which the peak of a human’s achievement potential is reached.
For most people, this period is reached in the early evening hours, such that
falling asleep in this period is especially difficult (Akerstedt, 1998); some au-
thors refer to this period as the ”forbidden zone” for sleep (Folkard and Barton,
1993). Additionally, early morning shifts conflict with the circadian nadir, i.e.,
the period at which the low point of a human’s achievement potential occurs.
Typically, this period is reached in the early morning hours. As a consequence,
waking up in this period to start working is difficult (Akerstedt, 1998). Some
authors deduce recommendations for the earliest starting time of a morning
shift (e.g., Kecklund and Akerstedt, 1995, who recommend a starting time of
7 a.m. or later). However, there is no consensus on the exact starting times
that should be avoided. At Freightrail, duties starting between midnight and
4 a.m. are considered as most contradicting to the circadian rhythm.

Duties with hotel rests are also unpopular. Because most trains operate at
night times, many hotel rests are scheduled at day times. At Freightrail, about
7% of the duties of a typical crew schedule contain a hotel rest. Approximately
60% of those hotel rests include noon; the average duration of a hotel rest is
10.5 hours.

The basic set covering formulation (SC) used for optimizing crew sched-
ules does not differentiate between popular and unpopular properties when
generating duties for each crew depot. The resulting crew schedules can con-
tain a large number of unpopular duties. Since the objective function does not



include fairness components, some crew depots typically obtain a higher-than-
average share of unpopular duties, while others have a smaller-than-average
share.

In the past, Freightrail used penalty costs for unpopular duties to reduce
the total amount of unpopularity in a crew schedule (see Jütte et al, 2011,
for an example of reducing the number of hotel rests). Still, the smaller num-
ber of unpopular duties remained unevenly distributed among crew depots.
At Freightrail, train drivers are organized in local work councils at the depot
level which have to approve the duties that are assigned to their depot. The
work councils typically show high aversion towards higher-than-average un-
popularity assignments for their depots. (Smaller-than-average unpopularity
assignments for their depot, on the contrary, apparently do not negatively in-
fluence the fairness perception at a work council.) When negotiating with the
work councils, the company management must indicate that unpopular duties
are similarly distributed between depots.

Unpopularity and fairness in crew scheduling has been addressed in the
literature, but for problems that differ from the one that we consider. In most
problems that are discussed in the literature, the total amount of unpopularity
that has to be distributed among crew depots is known beforehand. When
scheduling nurses in a hospital, for example, the number of night duties that
have to be distributed among the nurses is part of the problem input. The fair
share of unpopularity per group of crew members can be calculated a priori,
and fairness can be easily integrated into the set covering formulation (SC)
by adding fixed upper bounds on the amount of unpopularity attributed to
each group (e.g., De Causmaecker and Vanden Berghe, 2011). For the sources
of unpopularity we are analyzing in this paper, however, integrating fairness
considerations is more difficult. Both the number of duties with hotel rests
and the number of duties conflicting with the circadian rhythm are not known
a priori, but are determined during optimization. We cannot establish fixed
upper bounds on the amount of unpopularity attributed to each depot in
our case. Instead, we will compare the amount of unpopularity attributed to
a depot to the total amount of unpopularity of the current schedule at each
iteration of our algorithm. Using soft constraints, we will penalize each positive
deviation from this shifting reference value.

3 Literature Review

Fairness aspects have been analyzed for several decades. The literature dis-
tinguishes between output-based and intention-based fairness (e.g., Fehr and
Schmidt, 1999). While the latter focuses on the purpose of an individual’s
action, output-based fairness solely judges a situation based on the result of
an action. Adams (1965) provides an early analysis of output-based fairness
and sheds light on the consequences of a distribution of goods that is ”not
meeting the norms of justice”. The author underlines the findings of Homans
(1961) that inequity in a social exchange is perceived whenever the ratio of



output to input differs for the players involved. According to their research,
inequity in favor of one player evokes feelings of guilt, while inequity in favor
of the opponent results in anger. In line with these findings, Fehr and Schmidt
(1999) define (output-based) fairness as ”self-centered inequality aversion”.
They present a basic model to include fairness aspects in an individual’s util-
ity function: In a game with two players, the utility of one player is defined
by this player’s output, but linear deductions are made for an inequality in
the output of the players (both in advantage and in disadvantage of the player
in question). Typically, disadvantageous inequality is rated more severe than
advantageous inequality, resulting in a comparatively larger aversion factor in
the utility function. Bolton and Ockenfels (2000) refer to the equal division
of payoffs among several players as the ”social reference point” and embed
the findings of Fehr and Schmidt (1999) in a comprehensive model to capture
people’s behavior in various experiments.

Because scheduling and rostering of employees is closely connected with
the distribution of various types of work among individuals, discussions on
the fairness of a schedule are inevitable in practice. Blöchliger (2004) presents
a basic idea of integrating fairness aspects within staff scheduling. In a setting
with n individuals, the author suggests to measure fairness as either the dif-
ference between the maximum and minimum outcome of all individuals, or as
the standard deviation of all outcomes.

Most crew scheduling applications including fairness aspects can be found
in the stationary context, where all crew members are present at the same
physical location and can theoretically be assigned to all tasks for their qual-
ification. Examples include scheduling nurses in a hospital (e.g., Millar and
Kiragu, 1998; Bard and Purnomo, 2005; Maenhout and Vanhoucke, 2013) and
ground personnel at an airport (e.g., Dowling et al, 1997; Mason et al, 1998;
Stolletz, 2010). In the stationary context, crew scheduling and crew rostering
problems are typically solved simultaneously. A common approach to include
fairness in this process is to generate cyclic rosters, i.e., sequences of duties
that are rotated among all crew members. At the end of a scheduling horizon,
each crew member has then been assigned to each of the duties exactly once.
More recent approaches rely on agent-based cooperative search to incorporate
fairness constraints (see Martin et al, 2013).

Fairness models from stationary contexts can also be transferred to a mo-
bility context, where crew members are not fixed to one location, but start
their duty at one location, move around a network of locations during work
and return to their home location at the end of the duty. In contrast to sta-
tionary contexts, problem instances in mobility contexts are typically much
larger, such that crew scheduling and crew rostering must be treated sequen-
tially. For crew rostering in mobility contexts, implementing cyclic rosters is
still a common approach to include fairness aspects (e.g., Caprara et al, 1998).
Within the literature of crew scheduling in mobility contexts, however, only few
publications have yet brought up fairness considerations. Abbink et al (2005)
show how to integrate fairness aspects in a crew scheduling implementation
at Netherlands Railways. In their setting, sources of unpopularity include op-



erating old rolling stock, operating trains in unpopular areas, and having a
low variation within the duty. With their ”sharing-sweet-and-sour” approach,
the authors distribute popular and unpopular properties among crew depots
by imposing fixed upper bounds on the amount of unpopularity per depot.
Other applications indirectly reduce the unfairness of a schedule by explicitly
limiting the amount of unpopularity that is allowed per duty (e.g., Schaefer
et al, 2005, for an airline crew scheduling example).

In this paper, we include fairness aspects in a crew scheduling problem
in a mobility context. Similar to the general approach of Fehr and Schmidt
(1999), we assume that the utility of a group of crew members is reduced by
the amount of inequity that is perceived compared to other groups, but we
will focus on disadvantageous inequity. Rather than considering an interaction
of individuals, we are dealing with fairness aspects between several groups
of individuals and assume that the preferences of the individuals within one
group are equal. We only analyze fairness aspects within crew scheduling.
Unlike Abbink et al (2005), we refrain from imposing fixed upper bounds on
the amount of unpopularity per depot. Instead, we compare the amount of
unpopularity per depot to the changing total amount of unpopularity that is
inherent in the current crew schedule during the course of the optimization. As
we will see, higher fairness can be achieved not only by changing the assignment
of a given amount of unpopularity among depots, but also by changing the
total amount of unpopularity of the crew schedule.

4 Solution Approach

Prior to presenting our approach to integrate fairness considerations into crew
scheduling, we provide an outline of the basic crew scheduling solution algo-
rithm that is currently implemented at Freightrail. Details on the algorithm
can be found in Jütte et al (2011).

Most state-of-the-art solution algorithms that are used to solve crew schedul-
ing problems rely on column generation: The basic idea of this procedure is to
stepwise add to the optimization problem only some variables that are known
to improve the current best solution. The overall solution process then alter-
nates between a master problem (to solve the optimization problem restricted
to the number of variables that have been generated) and a sub problem (to
generate new variables that can improve the solution to the current master
problem); we refer the reader to Barnhart et al (1998) and Desrosiers and
Lübbecke (2005) for a comprehensive introduction to column generation. For
our specific railway crew scheduling problem, we have implemented the col-
umn generation algorithm RCS that is used for solving large real-world test
instances with tens of thousands of trips. To deal with large problem sizes, we
resort to solving the LP relaxation of the master problem and use a variable
fixing technique to stepwise induce integrality in the course of the algorithm:
If we do not find new variables in the sub problem, we choose some of the
variables with non-integer values in the current solution and round up their



value to 1. Re-solving the sub problem after each variable fixing phase, one
can typically regain much of the solution quality that is lost with this heuristic
procedure; see Gamache et al (1999) and Borndörfer et al (2001) for details
on variable fixing.

In the following, we will focus on a single source of unpopularity. However,
our model can easily be adapted to multiple sources of unpopularity.

For a given source of unpopularity, we define the duty unpopularity ud
as the amount of unpopularity that is inherent to duty d. As an example,
considering hotel rests as the source of unpopularity, we set ud = 1 if duty d
contains a hotel rest and ud = 0 else. (By union rules, the number of hotel
rests per duty is limited to a maximum of one per duty.) For each crew depot
j ∈ J , we calculate the depot unpopularity Uj as

Uj =

∑
d bjdudxd
kj

, (6)

where we use the depot capacities kj , i.e., the number of train drivers available
at each depot, as weighting factors to account for the different sizes of the
depots. At Freightrail, depot capacities are close to demand.

We denote the schedule unpopularity by U and compute it by

U =

∑
d udxd∑
j kj

. (7)

The schedule unpopularity corresponds to an average unit unpopularity across
all depots when taking into account the total capacity across all depots.

Fehr and Schmidt (1999) define fairness as ”self-centered inequity aver-
sion”. Considering a setting with two individuals A and B and outcomes OA

and OB , respectively, the authors define the utility function of individual A as

Utility(A) = OA − α(OB −OA)+ − β(OA −OB)+, (8)

where x+ = max(x, 0) for a real number x. The utility of individual A de-
creases linearly in OB > OA and OB < OA. α and β are aversion factors
accounting for inequity in disadvantage and advantage of individual A, re-
spectively. Fehr and Schmidt (1999) assume advantageous inequity to have
a smaller effect on the utility of an individual in general, i.e., β < α. Still,
advantageous inequity is assumed not to increase the utility of an individual,
i.e., β ≥ 0.

We build on the general concept of Fehr and Schmidt (1999) and define
the schedule unfairness F as

F =
∑
j

kj(Uj − U)+. (9)

The terms Uj − U measure the difference between the unpopularity of depot
j and the average unpopularity of the schedule. This models the situation at
Freightrail, where management compares the unfairness of duties assigned to a



depot with the overall schedule unpopularity. Our discussions with Freightrail
indicated that drivers are primarily concerned about an above average fraction
of unpopular duties assigned to their depot; they seem much less concerned
about a below average fraction. Therefore, we only include deviations of the
unpopularity from the average unpopularity in the fairness measure if the
depot unpopularity exceeds the average. In the fairness measure, we weight
the fairness values of the individual depots by their capacities, because a large
depot with high unfairness affects more drivers than a small depot.

The following fairness formulation is an extension of (SC) that takes the
unpopularity and fairness concerns into account:

minimize
∑
d∈D

cdxd +
∑
j∈J

ĉj ŷj +
∑
j∈J

kj c̃ỹj (10)

subject to
∑
d∈D

atdxd ≥ 1 ∀ t ∈ T (11)∑
d∈D

bjdxd − ŷj ≤ kj ∀ j ∈ J (12)

1

kj

∑
d

bjdudxd −
1∑
j kj

∑
d

udxd − ỹj ≤ 0 ∀ j ∈ J (13)

xd ∈ {0, 1} ∀ d ∈ D (14)

ŷj ≥ 0 ∀ j ∈ J (15)

ỹj ≥ 0 ∀ j ∈ J (16)

Compared to the standard set covering formulation, we have added fairness
Constraints (13): If, for depot j, the depot unpopularity Uj exceeds the sched-
ule unpopularity U , the deviation of Uj from U is captured in a penalty variable
ỹj . The new penalty variables are included in the extended objective Func-
tion (10) with a penalty cost factor kj c̃. Multiplying the standard penalty cost
factor c̃ with the respective depot capacity kj , we ensure that we penalize
deviations in unpopularity proportionally to the sizes of the depots.

The fairness formulation above is still linear in the decision variables xd, ŷj ,
and ỹj , which is a prerequisite for applying this formulation when solving large-
scale problem instances. Using the fairness formulation as the master problem
within our RCS algorithm, we obtain the railway fairness crew scheduling
algorithm (RCS− F). In the following section, we analyze the performance
of the RCS − F algorithm regarding solution quality of the resulting crew
schedule, unpopularity level, and fairness level obtained.

5 Computational Results

We tested our algorithm using data from Freightrail. Our test set consists of
3, 911 trips from 1, 420 trains operating between 106 stations. 33 of these sta-
tions are depots, i.e., locations where a duty can start or end. Each train driver
is assigned to a distinct depot. In total, 2, 033 train drivers are available across



all depots. Depot capacities vary between 1 and 335 train drivers. Figure 1
shows a histogram of the depot capacities.
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Fig. 1 Histogram of Depot Capacities

We will analyze the distribution of unpopular duties among the 33 depots
and the effects of including fairness considerations on the properties of the
solution schedule. First, we will choose conflicts with the circadian rhythm as
the source of unpopularity. Then, we will move on to hotel rests.

To compare the outcome of our test runs, we will use three different key
performance indicators: Net schedule costs znet, schedule unpopularity U , and
schedule unfairness F . The net schedule costs are the costs of the solution
schedule excluding the fairness penalty costs and capacity penalty costs, i.e.,
znet =

∑
d cdxd. Schedule unpopularity and schedule unfairness are defined in

Equations 7 and 9, respectively.
All test runs were executed on a computer with an Intel Xeon processor, 8

cores, 2.13 GHz, 24 GB RAM, and a 64 bit operating system. The LP relax-
ation of the master problem was solved using the Barrier algorithm of CPLEX
12.1. All code was executed in parallel using the Open MP programming tech-
nique.

5.1 Circadian Rhythm Conflicts

Following the current approach of Freightrail, we consider duties starting be-
tween midnight and 4 a.m. as unpopular. We set ud = 1 if duty d starts
between midnight and 4 a.m., and set ud = 0 otherwise. Then, Uj measures
the proportion of unpopular duties at depot j, and U measures the proportion
of unpopular duties within the schedule. F represents the number of unfairly
assigned unpopular duties in the schedule, i.e., the number of unpopular duties
that have been assigned to the depots beyond their respective fair share.
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Fig. 2 Depot Unpopularities, Circadian Rhythm, Base Case

To obtain a benchmark solution, we applied the RCS algorithm, i.e., the so-
lution algorithm without fairness constraints, to our test data. In the following,
we will refer to this solution as base case. The RCS algorithm is a heuristic,
but generates close-to-optimal solutions. In our numerical experiments, the
costs of the crew schedule were less than 0.4% above a known lower bound
on the optimal crew schedule. The resulting crew schedule consists of 1, 658
duties. Of those duties, 270 start between midnight and 4 a.m. The schedule
unpopularity of the solution is U = 0.13, i.e., 13% of the duties start between
midnight and 4 a.m. The unpopular duties are unevenly distributed among
crew depots, with Uj ranging between 0 and 0.31, and the solution exhibits
a schedule unfairness of F = 79.80. Figure 2 shows the depot unpopularities
for the depots in the base case. Note that 20 depots have not obtained any
unpopular duties, but depots D33 and D24 have 31% and 28% unpopular du-
ties, respectively. It is not surprising that such a situation is considered unfair
by the train drivers of the depots with high fractions of unpopular duties.

Next, we applied the RCS − F algorithm to our test data. To analyze
the effect of the fairness constraints on our three key performance indicators,
we stepwise increased the fairness penalty costs c̃ from 0 to 3000. Fairness
penalty costs of 1, for example, imply a 1 Euro increase in schedule costs
for each unpopular duty that is unfairly assigned in the schedule. Figure 3
shows the results in terms of net schedule cost and level of fairness achieved.
The x-axis of the graph shows the net schedule costs of a solution schedule
in relation to those of the base case. A value of 101%, for instance, indicates
that the net costs of the solution schedule are 1 percent above those of the
base case schedule. The y-axis shows the corresponding unfairness values F .
The diamonds represent the numerical solutions under different penalty costs.
The line shows the corresponding exponential regression. The upper left point
denotes the base case solution and has a net cost of znet = 100% and a schedule
unfairness of F = 79.80.
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Fig. 3 Reduction of Schedule Unfairness, Circadian Rhythm

As we can see from the graph, the high level of unfairness in the base case
schedule can be reduced from F ≈ 80 to F ≈ 40 at a moderate cost increase
of 0.51%. Reducing the schedule unfairness further is relatively expensive. For
example, a reduction of the schedule unfairness to a value of F ≈ 6 increases
net schedule costs by 4.89%, which corresponds to several millions of Euros
per year. For some ranges of the fairness penalty costs, we observe particularly
small improvements in fairness. Changing fairness penalty costs from 500 to
1000, for instance, reduces schedule unfairness only from 15 to 13, but increases
costs by more than 1%.

Having examined the effects of decreased unfairness on the schedule costs,
we will next shed light on the relation between schedule unpopularity and
schedule unfairness for our test runs. In general, there are three means of
decreasing the schedule unfairness F :

1. Redistributing the current schedule unpopularity U among the crew de-
pots,

2. reducing the number of unpopular duties at depots with high depot un-
popularity (which implies reducing U), and

3. increasing the number of unpopular duties at depots with small depot
unpopularity (which implies increasing U).

Figure 4 shows the schedule unpopularity U (y-axis) as a function of the
schedule unfairness F (x-axis) for our test runs. The upper right point cor-
responds to the base case solution with F = 79.80 and U = 0.13. As we can
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Fig. 4 Relation of Schedule Unpopularity and Schedule Unfairness, Circadian Rhythm

see from the figure, the schedule unpopularity U decreases with the sched-
ule unfairness F . Reducing the schedule unfairness F by about half, however,
only results in a small decrease of the schedule unpopularity U , while fur-
ther reductions induce a large decrease of U . We conclude that the algorithm
initially mainly redistributes the current unpopularity among the depots to
reduce schedule unfairness. A further reduction of schedule unfairness is then
achieved by reducing the number of unpopular duties in the schedule.

Figures 5(a) and 5(b) show the depot unpopularities for a reduction of the
schedule unfairness F by 51% and 93% (at cost increases of 0.51% and 4.89%,
respectively). While the schedule unpopularity U decreased only marginally
from 0.13 to 0.12 in the first case (i.e., from 270 to 234 unpopular duties), it
decreased substantially to 0.02 (i.e., 31 unpopular duties) in the second case.

Figure 6 shows the number of duties per starting time for the solution
schedule of the base case (solid line) and for the solution schedule of the case
with maximum achieved fairness (dashed line). As the figure shows, the small
number of duties with starting times between midnight and 4 a.m. has been
achieved by increasing the number of duties starting before midnight and after
4 a.m.
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Fig. 5 Depot Unpopularities, Circadian Rhythm, Fairness Improvements

5.2 Hotel Duties

Hotel duties are the second main source of unpopularity among train drivers
at Freightrail. In the European freight railway business, a hotel rest within a
duty can last between 9 and 24 hours. Each duty can contain at most one hotel
rest. Interviews with train drivers have shown that the length of the hotel rest
is not a major driver of the unpopularity of a duty – if a train driver has to
stay at a hotel within a duty, the train driver typically does not attach much
relevance to the duration of the stay. We chose to use ud = 1 if d contains a
hotel rest and set ud = 0 else.

The base case solution contains 112 hotel duties, which corresponds to a
schedule unpopularity of U = 0.06. The hotel duties are distributed unevenly
among the depots; the number of hotel duties per depot range between 0
and 34. The schedule unfairness of the base case solution is F = 58.96, i.e.,
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approximately 59 of the 112 unpopular duties are unfairly assigned in the
schedule.

When increasing the fairness constraint penalty factor, we observed a sim-
ilar pattern as in the circadian rhythm case (see Figure 8): Initially, we can
significantly reduce schedule unfairness with marginal increases in cost. With
a net cost increase of 0.45%, for example, schedule unfairness can be reduced
from 59 to 25 (−58%). Additional schedule unfairness reductions are substan-
tially more expensive. Reducing schedule unfairness further from 25 to 4 (i.e.,
from 42% to 7% of the base case), for instance, requires a net cost increase
from 0.45% to 2.55%.

The reduction of schedule unfairness is partly achieved by an overall re-
duction of schedule unpopularity (see Figure 9). Compared to the circadian
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rhythm case, however, we do not observe a monotonous decrease of schedule
unpopularity with decreasing schedule unfairness. Instead, there are situations
where decreasing schedule unfairness is achieved by increasing schedule unpop-
ularity. For example, to decrease schedule unfairness from F = 28 to F = 25,
the algorithm increases the number of hotel duties from 55 to 67, which cor-
responds to an increase in schedule unpopularity of 22%. We attribute this
behavior to the fact that some hotel duties are highly beneficial. Hence, when
moderately increasing the fairness penalty costs, the algorithm rather adds
additional hotel duties at depots with currently small share of unpopularity
to obtain higher fairness. The highly beneficial hotel duties are only removed
from the solution schedule if fairness penalty costs are further reduced.

5.3 Balancing Objectives

As we have seen in our test runs, depending on the value of the fairness penalty
costs, the RCS−F algorithm emphasizes either net schedule costs or schedule
unfairness (and hence, in most cases, indirectly emphasizes schedule unpopu-
larity). Judging from our computational results, we recommend the following
steps to choose a fairness penalty cost value that balances net schedule costs,
schedule unpopularity, and schedule unfairness:

First, management should decide on the maximum cost increase that is
tolerated for a decrease of schedule unpopularity and schedule unfairness. Be-
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cause of the high absolute costs associated with a crew schedule, this limit
is probably set rather low (see also Jütte et al, 2011). For decreasing sched-
ule unpopularity and schedule unfairness regarding hotel duties, for example,
Freightrail might impose a maximum tolerated cost increase of 0.5%.

Then, test runs with the RCS−F algorithm with varying fairness penalty
cost values can be used to find the maximum possible decrease in schedule un-
fairness within the tolerated cost limits. For small cost increases, we observed
a high decrease in unfairness for our test runs. For a maximum tolerated cost
increase of 0.5%, for example, the best solution of our test runs reduced un-
fairness regarding hotel duties from an initial value of 59 to a value of 25 (at
a cost increase of 0.45%).

Finally, nearby solutions should be examined. If another schedule with
similar schedule unfairness, but significantly smaller schedule unpopularity
can be determined, this new schedule should be preferred over the current
one. In our example, a slightly smaller fairness penalty cost value results in a
schedule with schedule unfairness of 28 instead of 25, but only 55 instead of
67 unpopular duties, at a similar cost increase of 0.42%.

6 Conclusion

The traditional objective of railway crew scheduling is to generate train driver
duties that cover all trips at minimal cost. However, the acceptance of a crew



schedule by train drivers is essential to ensure successful operations. Train
driver satisfaction with a schedule is partly determined by the unpopularity
associated with the schedule and by the distribution of this unpopularity,
and railway companies face a triad of objectives (see Figure 10): Minimizing
net schedule costs, minimizing schedule unpopularity, and minimizing schedule
unfairness. Minimizing the objectives simultaneously is not feasible; optimizing
only one of the objectives typically results in an inferior solution with respect
to at least one other objective.

minimize

net schedule

costs znet

minimize

schedule

unfairness F

minimize

schedule

unpopularity U

Fig. 10 Conflict of Objectives

We have analyzed the crew scheduling problem of a major European freight
rail company. The company had focused on minimizing net schedule costs and
schedule unpopularity; the issue of minimizing schedule unfairness had not
been considered.

In this paper, we have described a mathematical model to capture fairness
within the crew scheduling problem. We have modeled unfairness as the devi-
ation of the actual share of unpopularity assigned to one group of train drivers
from the overall average. Fairness constraints have been included by adding
penalty costs in the objective function. We have explicitly modeled the ob-
jectives of minimizing net schedule costs and minimizing schedule unfairness.
Schedule unpopularity, in contrast, has not been modeled explicitly, but was
influenced indirectly by decreasing schedule unfairness.

We have conducted computational tests with a problem instance arising
at the company that motivated our research. For two main sources of unpop-
ularity, we found that the unfairness of a solution schedule could be reduced
substantially at marginal increases in net schedule costs. Reductions of the
schedule unfairness exceeding 50%, however, could only be achieved with large
increases in net schedule costs. In most cases, increased fairness was achieved
by either redistributing unpopular duties or reducing the total unpopularity
of the schedule. Overall, we noticed a positive correlation between schedule
unpopularity and schedule unfairness.

In our future research, we are planning to further analyze the relation
between unpopularity and unfairness in the crew scheduling context. For a
mere consideration of fairness aspects, increasing the schedule unpopularity
to achieve higher fairness is a feasible approach and is not inferior to other



approaches such as redistributing a fixed amount of schedule unpopularity
among groups of train drivers. However, a smaller total number of hotel duties
or circadian rhythm conflicts within a crew schedule contributes to the general
public interest of all train drivers. To account for this thought, we intend to
investigate how further bounding constraints on the schedule unpopularity
affect the performance of our algorithm.
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