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Schedule-Free High-Frequency Transit Operations
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M. Wilson · Haris N. Koutsopoulos

Abstract High-frequency transit systems are essential for the socioeconomic
and environmental well-being of large and dense cities. The planning and
control of their operations are important determinants of service quality. Al-
though headway and optimization-based control strategies generally outper-
form schedule-adherence strategies, high-frequency operations are mostly planned
with schedules, in part because operators must observe resource constraints
(neglected by most control strategies) while planning and delivering service.
This research develops a schedule-free paradigm for high-frequency transit
operations, in which trip sequences and departure times are optimized in real-
time, employing stop-skipping strategies and utilizing real-time information to
maximize service quality while satisfying operator resource constraints. Follow-
ing a discussion of possible methodological approaches, a simple methodology
is applied to operate a simulated transit service without schedules. Results
demonstrate the feasibility of the new paradigm.
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1 Introduction

High-frequency transit operations are subject to stochastic running times and
demand that lead to differences between planned and delivered service. Re-
searchers have proposed a number of real-time control strategies to maintain
service quality and mitigate disruptions, most of which disregard schedules
and aim for headway regularity. However, operations planning remains heav-
ily focused on schedules, which are deterministic and constrain the availability
of vehicles and crew. This dichotomy can sometimes put desirable control out-
comes at odds with schedule constraints. The research presented in this paper
develops a schedule-free operations planning paradigm in which operations
planning is driven by real-time optimization. Under the new paradigm, transit
systems adapt to current and expected future conditions to maintain service
quality while satisfying resource constraints.

The process of planning and delivering high-frequency public transporta-
tion service can be divided into three phases: service planning, operations
planning, and service delivery. Service planning defines the service character-
istics of importance to passengers, including network design and span and
frequency of service. Operations planning determines how service will be de-
livered, generally as formalized in vehicle and crew schedules. Service delivery
is the movement of vehicles and crew according to the operations plan, sup-
plemented by control interventions to prevent and manage disruptions.

The planning and delivery process typically follows a schedule-based para-
digm, under which the operations plan takes the form of a schedule and the
principal aim of control in service delivery is schedule adherence. A drawback
of this well-established paradigm is the dichotomy between a deterministic
plan and a stochastic operating environment. Schedules specify planned stop
times assuming particular running times, which may turn out to be shorter or
longer once realized.

Researchers have proposed a number of control strategies for high-frequency
transit, and have shown that the most effective strategies do not adhere to the
schedule, but instead aim for headway regularity or passenger cost minimiza-
tion. These control strategies can generate policies that conflict with resource
constraints. For example, holding a vehicle that is late with respect to the
schedule might be desirable from a passenger cost perspective, but undesir-
able or impractical in a system with strict constraints on crew working hours.
Existing control strategies neglect planned vehicle entries and exits, requir-
ing operators to remain focused on the schedule, and perhaps discouraging
them from embracing strategies that could help them improve service with
the resources available.

This research proposes a schedule-free paradigm for high-frequency tran-
sit operations, in which operations planning is driven by optimization based
on real-time information. In this paradigm, resources would be allocated be-
fore service delivery to a given service (or set of services), prespecifying only
planned entry and exit times and locations for vehicles and crews. Unlike in
the schedule-based paradigm, specific trips are not assigned to vehicles and



crew beforehand. Instead, most operations planning decisions take place while
service is being delivered, reflecting current and expected future conditions,
and aiming for service quality while satisfying resource constraints.

The schedule-free paradigm enables a transit system to adapt recovery
times, headways, and number of trips served to operating conditions as they
exist. Flexibility is further increased when vehicles are shared among multi-
ple lines, branches, or variations of a line. For example, short-turning can be
used to increase frequency in the most heavily used portion of a line when
overcrowding is detected (or expected). The sequence of trips served by each
vehicle must allow the vehicle to meet exit constraints. A vehicle that does not
have enough time to serve an additional round trip between terminals may be
able to serve a short variation.

Apart from the supporting framework and models developed in this re-
search, operating high-frequency transit without schedules is enabled by pas-
sengers’ unawareness of schedules and recent advances in information technol-
ogy. Passengers on high-frequency transit do not plan to take specific scheduled
vehicle trips, but instead expect to wait a short time after their arrival at a
stop (or station). Recent advances in information technology are another key
enabling factor. Schedule-free operations planning relies on real-time sensing
technologies to capture the current state of the system, powerful computing for
plan optimization, and fast communications between vehicles and computers
to transfer sensor data and update plans for near-term operations.

This research develops the framework and models that could be used to
operate high-frequency transit without schedules, and evaluates the potential
of the schedule-free paradigm for high-frequency transit. Section 2 reviews the
literature, Section 3 presents the framework, Section 4 formulates the real-time
trip planning problem, Section 5 presents a simple initial methodology, Sec-
tion 6 applies the framework and methodology to a simulated transit service,
and Section 7 draws conclusions.

2 Literature Review

State-of-the-art operations control for high-frequency transit has advanced
steadily over the past few decades, both methodologically and in terms of
objectives. Control strategies such as holding, expressing, deadheading, and
short-turning have been investigated, and increasingly rich decision support
models have been proposed. The earliest models predate the availability of real-
time vehicle location data (Osuna and Newell, 1972 and Barnett, 1974). More
recent models utilize real-time data to capture the current state of the system
and generate control policies accordingly (Eberlein et al, 2001, Daganzo and
Pilachowski, 2011, and Bartholdi and Eisenstein, 2012). The most advanced
models are based on rolling horizon optimization, which generate policies based
on forecasts of system performance under potential control actions (Delgado
et al, 2012, Sáez et al, 2012, and Sánchez-Mart́ınez, 2015).



Throughout these advances there has been a move away from schedule
adherence and toward headway adherence (Abkowitz and Lepofsky, 1990),
headway regularity (Daganzo and Pilachowski, 2011, Cats et al, 2011, and
Bartholdi and Eisenstein, 2012), and passenger cost minimization (Delgado
et al, 2012, Sáez et al, 2012, and Sánchez-Mart́ınez, 2015). The simplest control
objective is schedule adherence, which aims to minimize deviations from the
vehicle schedule. While this is a suitable aim for low frequency service in
which passengers plan to take specific trips from the timetable and time their
arrival at origin stops accordingly, researchers have long recognized that other
strategies can improve performance in high-frequency transit when passenger
arrivals are independent of the (often unpublished) timetable (Barnett, 1974).

In contrast to operations control, operations planning remains largely sched-
ule-based. The schedule-based process of generating a timetable and vehicle
and crew schedules is applied in the same manner to low-frequency and high-
frequency transit, despite the differences in control objectives. Viewing oper-
ations planning and control for high-frequency transit together, current best
practice is to produce schedules in the planning phase and subsequently ig-
nore or abandon them in the service delivery phase to deal with disruptions.
Operations planning for high-frequency transit has not yet evolved to become
schedule-free.

Much of the work on real-time operations planning in transit has focused
on disruptions management. A common and challenging problem is the recov-
ery of a transit service after incidents cause delays and render the schedule
infeasible. Among the works surveyed, the goal is invariably returning the
system to the schedule as quickly as possible. Adenso-Dı́az et al (1999) and
Şahin (1999) focus on minimizing changes to the original schedule. Walker
et al (2005) use integer programming to recover a train timetable and crew
roster, minimizing deviations from the existing schedule and cost increase from
adjusted crew shifts. Huisman and Wagelmans (2006) focus on real-time ve-
hicle and crew scheduling given a timetable. Mazzarello and Ottaviani (2007)
use heuristics to minimize delays by controlling speeds and considering re-
routing. Törnquist and Persson (2007) address a similar problem with mixed
integer linear programming, as do D’Ariano et al (2007) using a discrete event
model and a truncated branch and bound algorithm. Rodriguez (2007) uses
constraint programming and a simulation model for real-time routing and
scheduling of trains running through a junction. D’Ariano et al (2008) test
the concept of regenerating timetables to resolve conflicts, with the goal of
minimizing delays with respect to the original timetable. Rezanova and Ryan
(2010) focus on recovering the train driver schedule through the use of re-
covery time, re-routing, and trip cancellations. Corman et al (2010) employ a
tabu search algorithm for rerouting trains during disruptions with the goal of
minimizing delays. Corman et al (2012) minimize both train delays and missed
connections (for passengers whose trips involve transfers). Krasemann (2012)
combines a truncated branch and bound algorithm with guiding heuristics to
obtain a quick response to incidents under scheduled service. Veelenturf et al



(2012) allow small delays in the timetable in exchange for greater flexibility in
the real-time crew rescheduling problem, which results in fewer cancellations.

There has also been much work on service and operations planning be-
fore service delivery. The traditional process, which breaks the problem into a
sequence of subproblems (frequency determination, timetable development, ve-
hicle scheduling, and crew scheduling), is well established (Vuchic, 2005, Ceder,
2007, and Boyle, 2009). Desaulniers and Hickman (2007) survey operations re-
search applications to service and operations planning. Recent developments
have focused on increasing flexibility or integrating across the multi-step ap-
proach. Site and Filippi (1998) address the problem of service planning with
short-turning and variable vehicle size. Leiva et al (2010) optimize a combina-
tion of full and limited-stop services for an urban bus corridor with capacity
constraints. Cortés et al (2011) combine short-turning and deadheading for
setting frequencies and vehicle capacities in a simple transit corridor. Valouxis
and Housos (2002) combine bus and driver scheduling using heuristics and
linear programming, focusing on scheduling bus service for the following day.
Huisman (2007) develops a crew rescheduling model to minimize cost when
changes to the timetable or vehicle schedule have made the original crew sched-
ule infeasible, e.g. during repair works. Mesquita and Paias (2008) integrate
vehicle and crew scheduling given a timetable combining a multicommodity
network flow model with a set partitioning/covering model.

3 Framework

Transit service is planned in two stages: service planning and operations plan-
ning. Service plans define the transit network and service characteristics such
as span of service and frequency, which influence both the kind of service pas-
sengers expect and the resources (for example, vehicles and drivers) required
for operations. Operations plans define how an operator expects to deploy
resources to deliver transit service to meet the service plan.

While service planning happens the same way under both schedule-based
and schedule-free operations, there are significant differences in the way op-
erations planning takes place. Figures 1 and 2 illustrate the two paradigms.
Under the schedule-based paradigm the operations plan is fully defined, and
therefore fixed, before service delivery. Operations planning involves timetable
development and vehicle and crew scheduling. Timetables specify vehicle de-
parture times from stops or stations, reflecting the service frequencies set ear-
lier as well as expected running times. Vehicle scheduling assigns sequences
of trips from the timetable to specific vehicles, resulting in the sets of trips
to be served by each vehicle. Crew scheduling assigns sets of vehicle trips to
drivers in accordance with work rules governing shift durations, breaks, and
pay provisions. During service delivery, operations control focuses on schedule
adherence, which is meant to result in service that meets service planning ob-
jectives. Vehicles are held at terminals and other control locations to prevent
early departures, and depart as soon as possible after late arrivals. Stochas-
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Fig. 2 Schedule-Free Paradigm

tic factors affect operations, sometimes causing delays and overcrowding, but
there is no provision to adjust the plan to reflect current and expected oper-
ating conditions.

The schedule-free paradigm defers some operations planning decisions until
service delivery. Instead of planning the deployment of vehicles and crews at
the trip and stop level, only their entry and exit times are planned before ser-
vice delivery. Trip and stop level activities are planned during service delivery,
which allows planned service to adapt to current and expected conditions, uti-
lizing observations of stochastic running times and demand realizations that
are not available before service delivery.

Vehicle and Crew Entry and Exit Planning Entry and exit plans specify when
and where vehicles and crew enter and exit service, but not the specific set



of trips each vehicle and driver serves. Entry times define the earliest allowed
planned dispatch, while exit times define the latest allowed planned end of a
trip. The number of active vehicles and crew, which can vary by time of day,
should reflect the frequencies of the service plan as well as running times and
demand. Vehicle and crew availability must be decided before service delivery
because drivers need to know their check-in and check-out times and agencies
need to allocate resources to routes and budget operations. Operators may
assign vehicles and drivers to a single line, or they may allow them to be used
across multiple lines (for example, a set of lines sharing a terminal).

Real-Time Trip Planning The specific trips each vehicle and driver serve are
planned in real-time during service delivery, and adjusted based on operating
conditions, aiming to minimize a combination of passenger and operator costs
while satisfying the constraints defined in the entry and exit plan. Real-time
planning must consider the time remaining until each vehicle’s and driver’s
latest allowed planned exit and the feasibility and cost of completing each
vehicle’s planned sequence of trips. Strategies employed to meet the opera-
tions objective may include holding, short-turning, dead-heading, expressing,
and injecting reserve vehicles. The output of the optimization-driven process
specifies target departure times for all planned stop visits. These plans, which
can be updated every few minutes, are communicated to vehicles in real-time
and treated like a schedule for control purposes. The availability of a vehicle
according to the entry and exit plan does not require the real-time plan to use
it. For example, some vehicles may be reserved to respond to disruptions, the
decision for the vehicle to enter being part of the real-time planning process.

Entry and exit plans can reflect different cost structures and objectives,
from tight exit constraints under strict work rules to fixed unit operational
cost without hard exit constraints for driverless fleets. Exit constraints can
be a combination of strict and flexible. Strict entry times might reflect the
check-in times of drivers, which may not be altered in real-time. Flexible exit
times might reflect the desire for a driver to exit by a certain time with a
possibility for overtime payment for the time served after the planned exit
time, in cases where some exit lateness can be traded off with better service
quality for passengers. Both types of constraints may be used simultaneously.

A transit system’s performance under the schedule-free paradigm feeds
back into entry and exit planning. Entry and exit plans limit what can be
achieved in real-time, so it can be beneficial to optimize them. Simulation can
be used to predict performance with a given entry and exit plan when no
observations of real service exist or when systematic changes in the operating
environment are expected. The traditional schedule-based approach can be
used to make a first entry and exit plan if one does not exist, keeping the
times at which vehicles and crews enter and exit service without defining trip-
level detail.
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4 General Methodology

Schedule-free transit is driven by real-time operations plan optimization. Plans
define the future trajectory of each vehicle from its current or future entry lo-
cation to its exit, specifying the sequence of stop visits with target arrival and
departure times. Figure 3 illustrates the schedule-free operations architecture.
The controller uses the dynamically modeled running times and demand to
maintain an estimate of the current state. Every time a vehicle visits a stop,
the estimated number of passengers inside and number of passengers left be-
hind at the stop (by origin-destination pair) are updated. The operations plan
is consulted to determine planned departure times; vehicles hold if they are
ahead of the planned trajectory and holding is allowed at the current loca-
tion. Vehicles may skip stops through strategies such as short-turning and
deadheading as dictated by the plan. The plan is updated at regular intervals,
e.g. every 5 minutes.

The first step in the process to update the operations plan is modeling the
current state of the system, which sets boundary conditions for the subsequent
plan optimization step. The current state includes locations of vehicles in the
system, each vehicle’s variation, the number of passengers in vehicles (by des-
tination), the number of passengers waiting at each stop (by destination), the
previous vehicle departure time from each stop, the current vehicle or location
of drivers in the system, and the (planned) entry times and locations of vehi-
cles and drivers not yet in the system. These are inputs to the plan optimizer,
along with minimum and maximum holding times by stop, dynamic running
time and demand functions, unit boarding and alighting times per passenger,
weights for passenger waiting time, in-vehicle time, and driver exit lateness,
and scheduled exit times and locations for vehicles and drivers.

Real-time operations plans are generated based on these inputs by opti-
mizing trip sequences (the spatial dimension) and departure times (the tem-
poral dimension), which together define vehicle trajectories. The collection of
planned trajectories (for all vehicles) defines a plan, with corresponding head-
ways, loads, passenger waiting and in-vehicle times, and vehicle exit times.
The objective is to minimize a combination of passenger and operator costs
while meeting resource constraints. For simplicity, vehicles and drivers are
considered a single entity; drivers are not explicitly modeled, but their entry
and exit constraints are assigned to the vehicle they operate. The trip plan



optimization problem can be formulated as

minimize
x∈X

C(x; p) (1)

subject to uv ≤ u′′v ∀v ∈ V (2)

zv = z′v ∀v ∈ V (3)

vehicle movement constraints (4)

passenger activity constraints (5)

hmin
e ≤ he ≤ hmax

e ∀e ∈ E (6)

where x is a candidate plan, X is the set of feasible plans, p is a set of exogenous
parameters and initial conditions, uv and u′′v are the planned and latest allowed
exit times of vehicle v, zv and z′v are the planned and required exit locations of
vehicle v, he is the holding time corresponding to a planned stop visit e, hmin

e

and hmax
e are lower and upper bounds on holding times at the same planned

stop visit, V is the set of vehicles, E is the set of planned vehicle stop visits, and
C(x; p) is a general non-convex cost function covering the modeling horizon,
subject to general constraints that, in addition to those explicitly listed, define
initial conditions, and vehicle and passenger movement. The variables defining
a plan x are both continuous (departure times) and discrete (trip and stop
sequences). Constraints (2) and (3) ensure that plans deliver vehicles to their
exit locations by the required times, while constraint (6) limits holding times
at terminals, turning points, and stops. Terminals and en-route turning points
are modeled as stops without demand.

The cost measure C combines mean passenger cost CP , exit lateness cost
CL, and plan complexity cost CC :

C = CP + θLCL + θCCC (7)

where θL and θC are the relative weights of exit lateness and complexity,
respectively.

Passenger cost captures waiting time at stops and in-vehicle time, over a
horizon extending from the current time t0 to tf . It includes the in-horizon
portion of waiting time Wf for passengers who are still waiting at the end of
the horizon. A discount factor can be applied to weight costs incurred sooner
more heavily than costs incurred later. This reflects growing uncertainty of
predicted future states over time. The discount factor is of the form eβ(t−t0) ∈
[0, 1] ;β ≤ 0. Mean passenger cost is given by

CP =

∑n
i=1 eβ(ti−t0) (Vi + θWWi) + eβ(tf−t0)θWWf

P
(8)

where n is the number of planned stop visits, ti, Vi and Wi denote the de-
parture time, in-vehicle cost, and waiting cost of the ith planned stop visit,
respectively, tf and Wf denote the time and waiting cost at the end of the
horizon, respectively, θW is the relative disutility of passenger waiting time,
and P is the total number of boardings.



Exit lateness cost can be a general function. We use the following piecewise-
polynomial specification:

CL =
∑
v∈V

max
(

0, (uv − u′v)
α
)

(9)

where uv and u′v are the planned and target exit times of vehicle v, and α
is a constant parameter. Planned exits are those resulting from a candidate
operations plan x. Target exit times come from vehicle and crew entry and
exit plans, determined before service delivery. Real-time operations plans can
use vehicles and drivers up to their target exit times without lateness cost.
Some lateness may be allowed at a cost, but exits later than u′′ may not be
planned. By construction, target exit times u′ must not be later than latest
allowed exit times u′′. Values α > 1 can be adopted as a disincentive for very
late exits. With discounting it becomes

CL =
∑
v∈V

max
(

0, eβ(uv−t0) (uv − u′v)
α
)

(10)

Plan complexity cost CC can be added as a disincentive for plans requir-
ing a lot of stop-skipping (e.g. short-turning) or holding at many stops for
only marginal performance improvements. For example, complexity may be a
function of the number of planned short-turns.

The planning problem can be decomposed, without loss of generality, into
a trip sequences problem and a departure times subproblem. This decomposi-
tion is natural because trip sequences are discrete while departure times are
continuous. Mathematically, the trip sequence problem is

minimize
s∈S

C(s; d∗s, p) (11)

where s is a candidate combination of trip sequences for all vehicles, S is the
set of all feasible trip sequence combinations, and d∗s are optimal departure
times for each given trip sequence combination s, provided by the departure
time subproblem:

minimize
d∈D

C(d; s, p) (12)

where d is a set of departure times for all vehicles, D denotes the feasible space
of departure times, and s is a candidate combination of trip sequences for all
vehicles, given by the master problem. Constraints (2) through (6) apply, as
before, in both the master problem and the subproblem.

The schedule-free real-time planning problem is large, complex, and diffi-
cult to solve. Changes to a planned stop visit, in terms of either location or
timing, affect following planned stop visits for the same vehicle, including the
number of passengers waiting at the stop, dwell time, feasible departure times,
and possible next stops. Departure times, in turn, affect running times, and
therefore future stop visits, and exit times, which determine whether a trip se-
quence is feasible. Trip sequences of one vehicle affect those of nearby upstream



vehicles through the number of passengers waiting, the order in which vehicles
visit stops, etc. Trip sequences are inherently discrete, making it difficult to
model mathematically the relationship between alternative trip sequences for
a particular vehicle in terms of expected cost differences. In addition, the costs
of candidate trip sequences are highly dependent on departure times, because
they determine headways, waiting times, and exit lateness. This makes it diffi-
cult to estimate the benefits of different trip sequences without first optimizing
departure times.

Ideally, all trip sequences and departure times would be optimized together.
Unfortunately, this problem grows combinatorially, making it impractical to
solve in real-time. Given that the full problem is not tractable, a simplified
approach must be adopted. It would be challenging to make progress without
first reducing the dimensionality of the problem to attain non-combinatorial
complexity, but doing so sacrifices potentially good solutions. This is a critical
aspect of schedule-free operations: potential performance benefits derived from
increased flexibility and utilization of real-time information may not be realized
without a successful optimization approach, and this success largely depends
on how dimensionality is reduced.

A natural approach toward reducing dimensionality is decomposing the full
problem into subproblems, one per vehicle, solved sequentially, given sequences
for all other vehicles. This approach makes the problem tractable, but dras-
tically reduces the solution search space. Since trip sequences are optimized
one vehicle at a time, assumed sequences for the rest of the vehicles affect the
costs (and optimality) of each candidate sequence for vehicle v. This makes the
order in which subproblems are solved matter. The complexity of departure
time optimization must be considered, because a computationally expensive
approach could make it infeasible to consider even a single combination of trip
sequences.

In the context of this research it is desirable to capture the dynamics of
running times and demand, because neglecting them can lead to significant
differences between modeled and real costs. For instance, neglecting an increase
of running times during peak operations on a transit corridor might cause a
simple model to suggest a plan in which drivers are expected to exit on time,
but in reality there will be significant exit lateness.

5 Simplified Methodology

This section presents a specific methodology developed based on the preceding
discussion, with the aim of making the schedule-free paradigm operational in
a simulated transit line, as presented in Section 6. Several simplifications are
made in the interest of tractability. Application results presented in Section 6.2
suggest that this methodology does not perform well enough and that refine-
ment is needed. Nevertheless, it lays the groundwork for further exploratory
work.



The optimization process begins by generating a basic trip sequence for
each vehicle, which becomes the initially assumed trip sequence. Basic trip se-
quences have vehicles serve complete trips (without stop-skipping) and return
to the exit location. A basic trip sequence is feasible if the vehicle exits on, or
before, the latest allowed exit time. Trajectories for each vehicle are then opti-
mized, one vehicle at a time. Optimized trajectories replace initially assumed
ones, such that trajectory optimizations for subsequent vehicles incrementally
reflect these updates. Each vehicle’s trajectory is optimized by enumerating
feasible trip sequences and selecting the one with lower cost. Departure times
are optimized as part of each sequence’s evaluation. The remainder of this
section discusses each of these steps in greater detail.

Following the discussion in Section 4, the trip sequence problem (11) is
decomposed into sequential trip sequence subproblems for each vehicle, as
follows:

minimize
sv∈Sv

C(sv; sv̄, d
∗
s, p) (13)

where sv and Sv denote a candidate trip sequence and the set of feasible trip
sequences for vehicle v, respectively, sv̄ denotes the trip sequences assumed
for all other vehicles, and d∗s denotes optimal departure times for each trip
sequence combination (provided by the departure time subproblem). Each
instance of problem (13) optimizes the trip sequence of a vehicle v and de-
parture times for all vehicles (through the departure time subproblem (12)),
under assumed exogenous trip sequences sv̄ for other vehicles. Starting with
an initial assumption about the trip sequences for all vehicles, the subprob-
lems are solved sequentially, once per vehicle, each time capturing previously
optimized trip sequences. Thus, when the subproblem is solved for the last
vehicle, all trip sequences and departure times have been optimized.

Currently planned trip sequences (from the previous plan update, before
t0) may be assumed for all vehicles to start. Otherwise, a basic trip sequence
s∗v may be assumed. Basic trip sequences finish the current trip (if one is
being served) as originally planned and have no stop-skipping after the start
of the next planned trip. They can be based on one of two approaches. The
first approach generates the longest feasible basic sequence, composed of trips
between terminals until the latest possible on-time exit. The second approach
generates the closest basic sequence, composed of trips between terminals until
the exit closest to the target exit time. In both cases, no holding (beyond the
minimum required at terminals in order for drivers to rest between trips) is
assumed. Once each vehicle has an initial trip sequence, departure times can
be optimized by solving (12) to finish defining an initial solution.

After obtaining an initial solution, a set of feasible trip sequences is gener-
ated for each vehicle. The model builds trip sequences from a set of variations.
A variation is a unique ordered set of stops beginning and ending at a turning
point. In this context, a turning point is a stop (with or without demand)
where trips can begin or end. We assume that vehicles begin all trips empty
and that passengers only board vehicles that will serve their destination in
their current trip. Short-turns are enabled by specifying variations beginning



or ending at en-route turning points. A vehicle at a turning point can be taken
out of service (if the turning point is the designated exit location and there is
no time left to serve more trips) or continue to serve trips on any of the vari-
ations starting at that turning point. Dead-heading is enabled by specifying
dead variations, which begin and end at turning points but have no stops in
between. Limited stop services are enabled by specifying variations that skip
stops. The problem’s complexity increases exponentially with the number of
variations. Feasible trip sequences finish the current trip, do not have trips be-
ginning after u′, and exit before u′′. If there are no feasible trip sequences, the
trip sequence that returns the vehicle to its exit location soonest is selected.
If there is a single feasible trip sequence, it is selected. If there are multiple
feasible trip sequences, each one is evaluated by solving the departure time
subproblem (12), and the one resulting in the least cost is selected, thus solv-
ing (13). Trip sequences ending after the target exit time u′ incur exit lateness
cost.

The relationship between candidate sequences is difficult to model because
of changes in vehicle order, optimal departure times, interaction between ve-
hicles, and lateness. This makes it challenging, for example, to develop tight
bounding rules for a branch and bound algorithm. Instead of attempting this,
the best sequence is picked through enumeration. The value of a trip sequence
is highly dependent on departure times (of all vehicles from all terminals, turn-
ing points, and stops), which affect headways, waiting times, and exit lateness.
For each sequence sv being considered, the departure time optimization sub-
problem (12) is solved. Feasibility is determined by exit lateness constraints
and minimum and maximum allowed holding times. Departure times are ma-
nipulated through holding at stops and terminals.

The departure time problem is nonlinear and (in general) non-convex, so
there may be multiple local minima. The feasible solution space can be very
large for problems of typical size, and grows with the number of planned events
at control points in the horizon. Sánchez-Mart́ınez (2015) shows that (except
in cases of overcrowding) holding optimization generally results in even head-
ways. It is therefore reasonable to approximate the departure time optimiza-
tion policy with an even headway algorithm requiring far fewer performance
model evaluations, in exchange for the ability to evaluate more candidate trip
sequences. A constrained even headway policy is applied iteratively to decrease
cost, ensuring that holding time constraints are satisfied and vehicles do not
exit late. An event-based performance model is used to evaluate the cost of each
candidate plan. It is based on events representing vehicle arrivals at stops. The
reader is referred to Sánchez-Mart́ınez (2015) for further details.

The methods employed are deterministic. Aside from the implications of
neglecting stochasticity on the optimality of operations plans generated by this
approach, this can lead to unplanned late exits because trips can take longer
than expected. In effect, the exit lateness policy prevents (or discourages) trip
plans with expected late exits (at the time of trip plan optimization), rather
than late exits per se. While some operators might accept this, other may
require a stricter policy.



Fig. 4 Simulated Transit Line

6 Application

One of the objectives of this research is to assess the potential of the schedule-
free paradigm. While the previous sections have discussed the conceptual ar-
guments for planning trips in real-time, it is also important to demonstrate
the paradigm’s feasibility and performance. To that end, this section discusses
the application of the schedule-free paradigm to a simulated high-frequency
transit line, described in Section 6.1. Feasibility is evaluated in terms of compu-
tational cost and, in particular, optimization times. A formulation that takes
hours to solve could be interesting for off-line applications but is of little value
in a real-time context. Section 6.2 compares the performance of the transit
line under the schedule-based and schedule-free paradigms with and without
delays. Performance is evaluated in terms of passenger cost, i.e. waiting times
and in-vehicle time, and driver exit lateness.

6.1 Transit Line

The transit line is a simple (non-branching) transit line with 20 stops per
direction and a terminal at each end, as shown in Figure 4. Short-turning is
allowed at the 15th stop in each direction (to the 5th stop in the opposite direc-
tion), but must be decided by the time vehicles start their trips. Vehicles stop
at a turning point when short-turning, where they may hold before beginning
the next trip. This allows trips running between stops 1 and 20, 1 and 15, 5
and 20, and 5 and 15 in each direction. Deadheading and expressing are not
allowed. Terminals and en-route turning points are modeled as (dummy) stops
without demand.

There are 25 vehicles (not all operating simultaneously), each with capacity
for 60 passengers. All scheduled trips run between terminals. The schedule was
generated using a greedy algorithm that captures running times, demand, and
target headways. New trips are dispatched over a period of 8 hours, 95 in each
direction. The running time between stops is (deterministically) 1 minute,
except in direction 2 during the peak period between 3:00 and 6:00, when
running times increase to 2 minutes per link, to model the typical effect of
peak traffic in a shared right of way. We also consider cases in which there are
delays in direction 2 during the peak period to peak at 3 minutes per link. The
schedule assumes no delays. The target headway used to generate the schedule
is 8 minutes in the off-peak and 3 minutes in the peak. Demand is modeled
as a Poisson process. All origin-destination pairs (in each direction) have the
same arrival rate function. The arrival rate in direction 1 is such that vehicle



loads reach half the capacity when headways are 8 minutes. The arrival rate
in direction 2 is the same off-peak, but increases such that vehicles are 90%
full at the maximum load point when headways are 3 minutes in the peak. A
separate pseudorandom number generator is used to generate demand, with
common random numbers across all cases.

The target exit time u′ is 15 minutes after the end of each vehicle’s last
scheduled trip. This is also the latest allowed exit time, u′′. Since u′v =
u′′v ∀v ∈ V , there is only a hard exit lateness constraint, and it is not rele-
vant to set an exit lateness cost weight (θL in (7)) or an exponent α in the
lateness cost function (9). Solution complexity cost is neglected, with θC = 0
in (7). When evaluating passenger cost, waiting time at the stop is considered
twice as onerous as in-vehicle time, with waiting time weight θW = 2. The
cost discount factor is set so as to halve costs every hour. (These optimization
parameters are described in Section 4.) Vehicles must hold at least 2 minutes
at terminals and en-route turning points (which, like terminals, are modeled
as stops without demand), and can hold at most 2 minutes at stops 5, 10, and
15 in each direction. Figure 4 shows terminals, en-route turning points, and
stops where holding is allowed in darker gray.

Under the schedule-based paradigm, vehicles are held at terminals until
their scheduled departure time. Vehicles are dispatched to run short only when
current lateness exceeds the time savings expected by short-turning, regardless
of exit time. Under the schedule-free paradigm, trip sequences and departure
times are optimized every 5 minutes to update the operations plan, follow-
ing the methodology presented in Section 5. Vehicles are held at terminals
or en-route turning points until their planned departure time, and they are
dispatched to run short when the plan specifies. The real-time plan optimizer
assumes no-delay running times when predicting vehicle trajectories.

6.2 Results

The results presented in this section demonstrate the feasibility of the schedule-
free paradigm, and its performance under the simplified methodology pre-
sented in Section 5.

Table 1 compares performance measures for schedule-based (SB) and sched-
ule-free (SF) operations, across the three cases with different delays, with and
without short-turning allowed. The reported waiting, excess waiting, and in-
vehicle times are means over all passengers at all times. Exit lateness is the
time spent in operation after u′ = u′′, i.e. more than 15 minutes after last
scheduled stop visit.

There is no significant difference in mean waiting times, excess waiting
times, in-vehicle times, or lateness between the two paradigms in the base
case. This is not a trivial outcome because the real-time planner does not
have the schedule as a reference. Short-turning occurs three times in schedule-
free operations (in the case it is allowed), all with the same vehicle. It is not
required to prevent a late exit, but it is nonetheless planned by the optimizer,



Table 1 Performance Comparison

Short-Turning
Delay Performance Measure SB SF

None Waiting Time (min) 2.6 2.6
Excess Waiting Time (min) 0.0 0.0
In-Vehicle Time (min) 9.6 9.5
Late Exits 0 0
Max Exit Lateness (min) 0.0 0.0
Trips 190 192
Short Turns 0 3

Moderate Waiting Time (min) 3.3 2.7
Excess Waiting Time (min) 0.7 0.1
In-Vehicle Time (min) 10.8 10.7
Late Exits 0 6
Max Exit Lateness (min) 0.0 4.1
Trips 190 190
Short Turns 2 2

which implies it is driven by a lower predicted passenger cost. By short-turning
three times and using the extra 15 minutes, the schedule-free real-time planner
manages to serve another cycle.

With delays, mean waiting time decreases by 0.6 minutes (19%) going from
schedule-based (SB) to schedule-free (SF) operations, and mean in-vehicle
times differ by less than 0.1 minutes. Excess waiting time decreases by 87%.
There are no late exits with schedule-based operations because, aside from two
short-turns, lateness is mostly absorbed by the 15 minute grace period after
the last scheduled stop visit; although the delay makes some vehicles exit after
their last stop’s scheduled time, none are delayed by more than 15 minutes,
which is when we begin counting exits as late. These results show that at most
two short-turns are necessary to prevent exit lateness. Although the schedule-
free plan optimizer attempts to prevent vehicles from exiting late (i.e. more
than 15 minutes after each vehicle’s last stop’s scheduled time), 6 vehicles exit
late with schedule-free operations, 5 with exit lateness not exceeding 2 min-
utes, and one 4.1 minutes late. The same number of trips is served with both
paradigms, and short-turning is employed twice in both cases.

Vehicles can exit late under the schedule-free paradigm when they incur
unexpected delays in their last cycle. Three factors combined lead to late ex-
its: the unawareness of future delays when updating plans, the tendency of the
real-time planning algorithm to distribute slack time throughout a vehicle’s
run in order to regulate headways, and the restriction on short-turning (allow-
ing short-turning decisions to be made only between trips). The passenger cost
minimization objective encourages more holding than what would be applied
under scheduled operations when the line experiences delays. Holding can de-
crease waiting times, on the one hand, but increase the risk of exit lateness, if
there are further delays, on the other. The current methodology captures the
former but not the latter.



Simulations were run on a computer having an Intel Core i7-3930K pro-
cessor running at 3.20GHz. With a mean optimization time under 10 seconds
and a maximum of 221.2 seconds, it is feasible to plan operations in real-time
following the approach presented in Section 5.

7 Concluding Remarks

High-frequency transit systems face stochastic running times and demand. Op-
erating conditions are affected by external factors such as traffic and weather,
that cannot be predicted far in advance. Operations planning typically involves
scheduling, which produces a rigid plan that can be suboptimal when condi-
tions differ from those assumed to build the schedule. This research develops
a schedule-free operations planning paradigm in which operations are driven
by real-time optimization. Under the new paradigm, transit systems adapt to
current and expected future conditions to maintain service quality while sat-
isfying resource constraints. The only part of operations planning that takes
place before service delivery is entry and exit planning, which defines when
vehicles and drivers enter and exit the system. Real-time plans are updated at
short intervals (e.g. every 5 minutes). Stop-skipping strategies such as short-
turning can be employed to increase fleet and driver utilization and manage
overcrowding.

Plan optimization is driven by a cost minimization approach capturing
passenger waiting times and in-vehicle times, driver exit lateness, and solution
complexity, which can be used to prevent overly complex plans that give only
a marginal improvement in performance. Since the cost function is nonlinear
and non-differentiable, it difficult to find globally optimal solutions. The op-
erations planning problem is combinatorially complex, making it particularly
challenging to solve in real-time. In the interest of tractability, the problem
is decomposed into sequential planning problems, one per vehicle, which are
solved reflecting plans for other vehicles. This subproblem is further decom-
posed into a trip sequence problem and a departure time subproblem. Feasible
trip sequences are evaluated by solving the departure time subproblem, and
the minimum cost sequence is selected.

The schedule-free paradigm is applied to a simulated transit line, with
and without delays. Performance outcomes are compared with the schedule-
based paradigm. While the two paradigms result in similar performance in
the absence of delays, the schedule-free paradigm generally leads to lower
passenger waiting times, but more late exits, in the presence of (unexpected)
delays. The observation of short-turning in the case without delays suggests
that short-turning is sometimes planned to decrease passenger cost, perhaps
by increasing frequency on a busy portion of the transit route.

Given the complexity of the problem, a full stochastic optimization is not
yet within reach. However, simple approaches can help make the planning
strategy robust to uncertainty about future delays. For example, the target
and maximum allowed exit times given to the planning algorithm could be



changed over time. Earlier times could be given at the beginning of the day,
to start with tighter constraints, and slack could be added by gradually de-
laying exit constraints. Alternatively, lateness cost could be specific to each
vehicle, starting high to discourage early use of too much slack, and decreasing
over time. The motivation behind such strategies is making plans robust by
reserving some buffer time for unexpected delays, decreasing the need to re-
visit plans and have only bad (feasible) trip sequences to choose from. A more
direct alternative is making exit time constraints a function of running times.
In this case, more exit time would be made available when exogenous factors,
such as traffic in a shared right of way, slow vehicles. This might reflect an
operator’s adaptable tolerance for lateness.

Besides proposing the schedule-free paradigm and developing its frame-
work, this research takes what should be regarded as a first step in developing
optimization methods for real-time operations planning. Results of the simple
application demonstrate the feasibility and potential of schedule-free opera-
tions for high-frequency transit, but further methodological refinement and
evaluation are required to ascertain the performance benefits of schedule-free
operations for high-frequency transit.

Future work should develop the methodology to optimize entry and exit
plans, perhaps based on simulated schedule-free service under different operat-
ing conditions. It is worth exploring the modeling of driver constraints in more
detail, e.g. constraints on the minimum duration of breaks between spells of
work of a single driver, which introduces dependency between what is modeled
as separate vehicles in this research. The potential value of strategies such as
deadheading, expressing, unrestricted short-turning, and injection of spare ve-
hicles should be investigated. The schedule-free paradigm should be evaluated
in a wide range of transit services and cases in order to better understand its
robustness.
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