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Abstract We study the influence of real-time information services over the
performance of transit systems from the users' perspective. We focus on bus systems
and consider services which provide updated arrival time ofbuses to stops. Six
variants of a passenger behaviour model are proposed and implemented,
representing different degrees of information availability. To capture the dynamic
characteristics of the system, the passenger behaviour model is embedded into a
discrete event simulation framework. We perform a comprehensive set of
experiments, using a small city with 13 bus lines as a case study. The impact of
different assumptions concerning information availability (in particular real-time
information) is analysed in terms of user travel time. We test several scenarios, and
perform the analysis in terms of both aggregated and non-aggregated measures.
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1 Introduction

Nowadays developments on Information and Communication Technologies allow
easy access to information about transit operations, whichmight be changing the
way travellers choose services and routes in a network. Several on-line services are
currently available for transit users worldwide. These services, which are known as
Advanced Public Transportation Information System (APTIS, Coppola and Rosati,
2010) provide information (either static or dynamic) as well as suggested decisions
which can be used by transit passengers to improve differentaspects of their trips,
namely travel time, crowding or a generalized cost. The deployment of APTIS
involve large investments, therefore its assessment is a mandatory task for the
transit authorities and the government.

We focus on such services which provide real-time information like those
implemented in Transantiago1 and iBus2, related to transit systems based on buses.
These services provide information about the state of the system, usually consisting
on updated arrival time of buses to stops, which can be accessed by transit users at
any stage of their trip or at specific ones. Currently, different types of users have
access to information at different stages previous and/or during their trips. For
example, some users might have access to updated information through a computer
at the origin, displays at the bus stops, or using mobile devices anywhere. Usually
this information is broadcasted from an operation centre, which receives updated
positions of the buses and performs estimations based on expected travel times over
the network.

Evaluations of the impact of APTIS from observed data can be found in
(Breakwood et al., 2014; Watkins et al., 2011). In this work,and with a different
approach, we contribute towards the evaluation based on a detailed modelling of the
interactions between passengers and buses. Thus, we simulate the transit system
based on data related to the services, the demand and hypothesis about the passenger
behaviour. The study is focused in the point of view of the users, therefore we left
aside the analysis of the implications over the operator’s side, e.g. the fleet
management.

1.1 Literature review

Two main approaches can be distinguished in the literature,to evaluate the impact
of real-time information over transit users, with goals similar to the one of this study.
In one hand, analytical approaches aim to model the system and extract conclusions
about it, based on mathematical formulations and properties that can be derived
from them. On the other hand, dynamic models representing the evolution of the
system as time advances, enable to compute several measuresusually based on

1 http://web.smsbus.cl/web/
2 http://www.ibus.com.uy/index.html



simulation. In the following, we review the main studies which fall into these
categories.

In (Hickman and Wilson, 1995), the authors model a single corridor including
issues related to information content (expected departuretime and expected running
time of buses), place of information (in the terminal and on-board the vehicle) and
information accuracy (low and high level of accuracy in projecting travel times).
These aspects of the problem are represented by different components of a
probabilistic path choice model which is used to simulate a case comprising a
network of five nodes, corresponding to part of the transit system of Boston.
Different scenarios concerning the issues stated above aresimulated, and results are
evaluated in terms of several independent replications of the experiment. In general
terms, observed gains in travel time are not greater than 3% when real-time
information is available, which is considered by the authors as a modest
improvement. The results are statistically significant. The authors recognize the
difficulty of arriving to general conclusions based on experiments with a single case,
and they suggest other scenarios where the usefulness of real-time information
should be evaluated, namely, schedule of departure from origin and reduction of
passengers’ anxiety associated with the uncertainty of transit travel.

The study of Gentile et al. (2005) proposes an analytical framework which
generalizes the assignment model under the presence of common lines (Chriqui and
Robillard, 1975). The authors develop a formulation of the stop model, assuming
that passengers do not take the first bus which lead to destination; instead, when
real-time information is available, they can choose a different line that is going to
pass by the stop. A numerical example is presented, based in the case of Sioux Falls,
which comprises 24 nodes and 76 arcs. The experiments aims toillustrate the effects
of real-time information availability and service regularity over the network loading
and the passenger’s travel time. Improvement in total travel time when real-time
information is available is less than 1%. Moreover, the authors found that the impact
of service regularity and the availability of real-time information is less relevant for
short distance trips.

In (Coppola and Rosati, 2010), the authors perform an evaluation of APTIS
based in a simulation framework which comprises three main components: (a) the
network performance sub-model, which reproduces the travel time of the buses over
the links, (b) the operation control centre, which predictsarrival times and
occupancy levels of buses, and (c) the path choice sub-model, which represents
passengers’ decisions based on a random utility model. The study is done over a
case related to the city of Naples, which comprises 11 zones and 9 lines. The
resulting network, after exploding the underlying diachronic graph (a specific
structure used to represent the temporal characteristics of the transit service) has
about 38000 nodes and 75000 links. The experiments simulate2 hours
corresponding to the morning peak hour. Six scenarios are studied, considering
different conditions regarding service irregularity, information on waiting time and
information about bus occupancy. The results indicate thatsavings up to 12.5% can



be obtained when real-time information is available. In general, waiting time is
increased, while on-board travel time contributes to decrease the total time.

In (Cats, 2011), a random utility model is proposed for representing passenger
decisions at any stage of the trip. The methodology is applied in (Cats et al., 2011)
to a case study about the metro of Stockholm, which comprises7 lines, 210
platforms and 100 stations. The experiments consider different levels of provision of
real-time information (platform, stop, and network) and also different operational
conditions (the special case of service disruptions is studied). The simulation
consists of 10 independent replications of a period of 3 hours. Conclusions are that
path shifting and time savings up to 11% may be obtained by providing real-time
information to the transit users. In particular, that information appears to be very
useful in cases of service disruptions. The authors recognize the needs for validation
with a system-wide case study and real-world data.

More recently, Chen and Nie (2015) developed a model aimed tostudy the
influence of partial information over transit users. The term partial information
refers to the fact that real-time information can be available only for a subset of lines
from the whole system, thus generalizing the assumptions ofGentile et al. (2005).
Since partial information is provided, the best passenger path to reach destination
may include several alternative lines, which leads to the need for computing optimal
hyperpaths (Nguyen and Pallotino, 1989) under this scenario. Therefore, the authors
propose an algorithm for such calculation. Moreover, they provide a sufficient
condition to exclude cycles, which may appear under partialavailability of
information. Numerical results are reported using both small and real sized instances,
in particular the bus network of Chicago which has 125 lines.Main conclusions are
that real-time information contributes to attract more users to faster lines with lower
service frequency and it is more effective in faster lines. The authors also conclude
that benefits of real-time information in reducing the total travel time are very small
in the particular case study. Nevertheless, they acknowledge that potential gains due
to scheduling departures should be investigated, since this feature is not included in
their model.

In general terms, analytical models showed to be restrictive to represent several
real-time characteristics of the systems. Also, classicalassignment models (Spiess
and Florian, 1989) are difficult to adapt in order to represent the dynamic nature of
passengers’ decisions when they face real-time information. Therefore, mesoscopic
models have proved to be the most suitable alternative to be used in this context.
These models usually combine the discrete event simulationparadigm with
behavioural models like those based on random utility theory or optimal strategies.

1.2 Motivation and statement of contribution

The motivation of this study is twofold: (a) evaluation of the effect of real-time
information services over transit users in small cities of our region, and (b) using
state of the art methodologies concerning transit system modelling and simulation.



The former leads to consider particular characteristics with respect to both transit
service and users. We focus in systems which operate a moderate number of lines,
not very overlapped, with relatively low frequencies. Congestion is not usual,
neither at the road level nor at the bus level (i.e. capacity is sufficient to
accommodate the demand). From the passenger point of view, even though the
system operates with low frequency, users do not consider timetable information,
mainly because it is not published. Therefore, the usual passenger behaviour can be
considered as frequency-based (Nuzzolo, 2003) and (due to the size of the city)
transfers between lines are not usual. Moreover, we consider the fact that new
investments on infrastructure (e.g., provision of real-time information) are under
consideration. The potential benefits these investments may introduce, in some
cases require that transit users have access to technology,like mobile devices; but
different degrees of technology availability is present across the inhabitants of the
cities. Therefore, a rational assessment of the gains that can be obtained by
providing real-time information under this scenario, should be done.

The modelling of the scenario under consideration should beas realistic as
possible. Simulation is the most suitable alternative to model the dynamic
characteristics of transit systems with real-time information, since classical
assignment models (e.g. Spiess and Florian, 1989) assume steady-state operations.
The representation of passenger behaviour is the critical component of the whole
model. The existing passenger behaviour models have been successful in terms of
realism, at the expense of high computational and calibration requirements. Some of
them do not model relevant issues of our scenario, like decisions regarding
departure from origin and selection of origin stop. Moreover, due to high
computational requirements, several independent runs aredifficult to perform,
which precludes a statistical analysis of results (Law, 2006). Finally, some authors
recognize the need for an analysis at a system-wide level, using real data. Transit
systems have a complex structure comprising several trip patterns and several bus
lines, which entails complex interactions. Various outputmeasures should be
computed and compared in order to obtain a valid assessment

The contribution of this work is a comprehensive experimental evaluation of the
influence of real-time information services over the transit system performance from
the users’ point of view, using state of the art and sound methodologies. We propose
six variants of a base passenger behaviour model, which represents different
situations of information availability at different stages of travel. The proposed
model allows for an efficient implementation and does not require calibration. The
experiments are carried out with a test case relative to a small city for which real
data is available, particularly those corresponding to transit demand. Conclusions
are drawn, paying attention to the magnitude of improvements as a consequence of
information availability. Both aggregated and non-aggregated measures are analysed
in order to better support the conclusions.

The rest of the article is structured as follows. Section 2 describes the model
proposed, including the six variants of passenger behaviour under different
conditions of information availability. Section 3 describes the experiments,



including the planning, results and specific conclusions.In Section 4 we formulate
general conclusions and we state future work. Finally, Appendix A provides a
detailed description of the passenger behaviour models proposed.

2 Modelling approach

Our model for evaluating the impact of different degrees of information availability
over the performance of the transit system from user’s perspective, has three main
components which deserve detailed explanation: (a) the transit system
representation, that includes the network of lines along with the characteristics of
the services and the demand, (b) the passenger behaviour model, which represents
the steps followed by passengers to reach their destinations from their origins, and
(c) the discrete event simulation model, which performs a dynamic interaction of
both sub-models (a) and (b). In the following, we explain in detail each one of these
sub-models.

2.1 Transit system representation

We represent the bus network by coding the lines over the realstreet network,
whose segments include street direction and an estimation of the mean travel time.
This value is used as parameter for a normal probability distribution, in order to
model variations in bus travel time due to different factorslike driver characteristics
or traffic conditions. This is one important source of randomness of our model, and
it is the feature that affects passenger behaviour and system performance under
different degrees of information availability. The bus stops are modelled explicitly
and they are connected through walk arcs to zone centroids which represent origin
and destination places. Each line can have either forward and backward directions
(not necessarily using the same streets) or a single circular direction. Moreover,
each line has a frequency value (or its inverse, the headway), a timetable according
to its frequency, and its sequence of stops. The timetable states the arrival time of
buses to every stop of the line within the modelling time horizon, based on a given
initial time (first bus departure) and the fixed travel timeof each line segment.
Another relevant component of the transit system is the demand. In our case, it is
represented as an origin-destination (OD) matrix, which expresses rates of
individual trips from origins to destination. The demand isrepresented at the level
of centroids and each value is fixed within the whole time horizon. Each element of
this matrix is called OD-pair.

2.2 Passenger behaviour model

This sub-model is a critical part of the whole model, since encodes the way in which
passengers interact with the transit service. Several figures of system performance
(in particular, travel time) are affected by decisions taken by users, therefore a



realistic modelling of those decisions is mandatory. As stated in Section 1, static
assignment models do not allow for representing dynamic characteristics of the
interaction between passengers and buses, like those whichare present when real-
time information is available. Therefore, dynamic assignment models arise as the
most suitable alternative. Among them, we consider the so-called schedule-based
transit assignment models, which take as input a detailed representation of the
service (the timetable) and the demand, potentially variable in time. A relevant
concept in this context is the bus run, which refers to the specific departure of a bus
to perform the service of a given line at a given time. According to (Nuzzolo and
Crisalli, 2004), to model transit services at the run level,there are three types of
system representations. The diachronic graph (Nuzzolo andRusso, 1994) is a highly
structured model which comprises a service sub-graph, a demand sub-graph and an
access/egress sub-graph. The dual graph representation (Anez et al., 1996) includes
dual nodes which represent the runs, and links which model time congruence
relative to arrival/departure times of buses at stops. At last, the mixed line-
based/database approach (Tong and Richardson, 1984) combines a single
topological line representation with temporal information relative to bus movements
over the network. Main differences among these models are: (a) the management of
the trade-off between complexity of computer implementation and efficiency, and (b)
support for representing the passenger behaviour, in particular the path choice. In
the context of schedule-based assignment models for transit systems, a path between
origin and destination centroids is defined (Nuzzolo and Crisalli, 2004) by the
sequence of physical network nodes (including centroids and stops) as well as
arrival/departure times from/to them. A standard assumption in the literature is that
passengers always seek to minimize a measure (or conversely, maximize a utility)
when choosing the way for travelling from origin to destination using a given set of
transit lines. In this context, decisions may refer to departure time from origin,
initial bus stop, line (or set of lines) to take, and so on. Within the shedule-based
approach, a common assumption is that passengers think in terms of single paths.
On the other hand, in the frequency-based approach (where passenger do not know
the line timetables), a typical assumption is that passengers think in terms of
strategies (Spiess and Florian, 1989). In order to choose a single path, passengers
are assumed to apply shortest path algorithms over a networkwhich may change its
attributes (e.g., cost) as time advances. Moreover, in order to model different
perceptions of such attributes, a common accepted methodology is the Random
Utility Theory (Domencich and McFadden, 1975).

In this work, we propose a simple model for both service representation and
passenger behaviour, mainly related to the line-based/database approach, and more
specifically based on all-or-nothing assignment with dynamic rescheduling. This
means that passengers always take decisions about a single path and such decisions
are updated as the time advances, which entails that travel stages are performed
(walk, wait, board, etc.) and information about the state ofthe system is updated.
Under this general model we instantiate six variants which represent different
assumptions, most of them conditioned by different degreesof information



availability concerning the transit system. In the contextof this study and in the
light of its goals, the proposed model and its variants (alsocalled models in the
remaining part of the paper) have the following advantages:
− Simplicity, which entailstheyareeasyto understandandto validate.
− Suitable for modelling the characteristicsof our interest,where the effective

timetables do not differ significantly from the nominal ones. Also, the transit
system is assumed to operate without congestion in terms of bus capacity.

− Consistentwith the passengerbehaviourunder consideration,where usersdo
not use naturally information about timetables, even underthe presence of
medium-to-low frequencies.

− Sincethemodelis simple,it is alsoeasyto implementandto extendin orderto
include additional variants concerning passenger behaviour.

− Becausethe modelallows for an efficient implementation,this enablesto make
several experiments, which is needed in order to have statistically significant
results.
In the following, we explain the six proposed models in general terms;

Appendix A gives a more detailed description.
1. Real-time information at any stage (RTI-allways): Users with real-time

information about all the lines of the system at any stage of their trip. This
represents users that have a mobile device, which can be usedanywhere.

2. Real-timeinformation only at the origin (RTI@origin ): Usersthat can access
real-time information about the system only at the origin. This represents users
that access the information exclusively through the computer at their
home/office.

3. Real-time information of a single line (RTI-1Line ): Users with real-time
information of a single line at any stage of their trip. This represents some
services where users have to pay for obtaining real-time information about a
given line.

4. Static timetable (STT): No real-time information is available. Users choose
lines using a static timetable and no rescheduling is performed.

5. Real-timeinformationonly at the busstop (RTI@stops): Userswith real-time
information only at the bus stops, through screens providedby the transit
system infrastructure.

6. Frequency-basedapproach(FBA): No timetables are available. Users take
decisions using a frequency-based approach.

Moreover, in models 1 to 4 the users schedule their departurefrom origin using pre-
trip information, while in models 5 and 6 users begin to walk to the bus stop when
they appear in the origin centroid. Note that model 1 represents a somehow
sophisticated variant of passenger behaviour, while model6 represents the most
uninformed passenger. It is worth noting that none of these models consider
transfers, i.e. users travel from origin to destination using a single line; this greatly
simplifies the models and the analysis of results.



2.3 Discrete event simulation model

In order to model the dynamic characteristics of the system,the lifecycles of buses
and passengers are embedded into a discrete event simulation framework (Tocher,
1963). The simulation schedules and executes the events according to the times
stated by the problem parameters (line network, demand) andassociated probability
distributions. To do that, several events are designed, either bounded (its time of
occurrence can be predicted) or conditioned (the executiondepends on a particular
condition). In the following, we describe roughly those lifecycles:
− Bus: For each line given by its stop sequenceand timetable, the model

schedules the starting of each bus run (event StartBusRun).We are not
concerned with fleet management issues in this work. Buses appear at the initial
node of the route, at the time indicated by the correspondingrun; when the bus
finishes its route, simply disappears in the final node. Theevent
BusArrivalToStop executes the corresponding interactionwith passengers and
schedules the arrival to the next stop according to a random value determined
by the mean travel time of the corresponding link and the normal distribution.

− Passenger: For eachOD-pair, initially the first passengerarrival to theorigin is
scheduled by means of the event PassengerArrivalToOrigin.When this event is
executed for each OD-pair, the next arrival is scheduled using a negative
exponential distribution which rate is the value stated by the OD-matrix; this is
other source of randomness of our model. Once at the origin, the passenger plan
her/his trip and begin to walk to the origin stop (event
PassengerDepartsFromOrigin) or waits some time period, depending on the
specific behaviour model. Once at the stop (event PassengerArrivalToStop), the
passenger executes her/his plan which may entail a change ofdecision for each
bus that passes by the stop. For passengers already on-board, if the current stop
is destination, they alight and immediately begin to walk till destination
centroid.

2.4 Computer implementation

The model was coded in C++, using the EOSimulator library3. A relevant aspect of
the model is the representation of the dissemination of the real-time information. In
real systems, typically the location of each bus is reportedto a central planning unit,
which uses the information to predict arrival times to subsequent stops. These
predictions are then broadcasted to users. In this context,the accuracy of predicted
arrival times depends (among other factors) on the frequency in which the
information is reported by the buses. Analogous, as the predicted information is
more recent, the more accurate will be the data available to users. This aspect of the
real system is modelled in (Coppola and Rosati, 2010) by an Operation Control

3 http://www.fing.edu.uy/inco/cursos/simulacion/eosim_html/index.html



Center, which represents the central unit that gathers information, performs
estimations and broadcasts to users. In our model we use a simpler approach: once a
value of travel time along a network link is sampled, the corresponding dynamic
timetables are immediately updated. These timetables are available to all users, in
the models where real-time information is considered to take decisions. This greatly
simplifies the model and its implementation. Its main consequence is that numerical
results corresponding to users' travel time are underestimated in the models which
consider real-time information.

The travel time is recorded by using the Histogram feature ofEOSimulator.
Several histograms accumulate data from every passenger generated by the
simulation, discriminating the travel time by its components walk from origin, wait
at the stop, travel on-board and walk to destination. Different independent
executions of the simulation can be performed by changing the random seed. The
parameters which are affected by the seed are the bus travel time along the street
and the inter-arrival time of passengers to the origin centroids.

3 Simulation experiments and results

3.1 Methodology and goals

We test the simulation model over a case related to Rivera, Uruguay, a small city
with 65,000 inhabitants approximately. Its public transportation system has 13 lines,
some of them with overlapping segments (see Fig. 1). The model comprises 84 zone
centroids and 378 OD-pairs, which represent the transit demand within a time
horizon of 12 hours. Line headways range from 20 to 60 minutes. The complete
model has 522 nodes and 1528 arcs. A single execution of the model (6 hours of
simulation time) takes 18 seconds (average) in a Core i7 2.4 GHz computer.

The goals of the experiments are the following:
− Evaluationof the transit system'sperformanceunderthe hypothesisof the six

passenger behaviour models explained in Section 2.2. We analyse the results in
terms of travel time, using both aggregated and non-aggregated measures. The
former provides a framework for comparison among differentmodels in terms
of a single and specific value, namely, mean travel time. Thelatter allows for a
detailed analysis, enabling to discover potential unseen facts, and therefore it
complements the aggregated approach. The detailed analysis of results is done
in two directions: (a) different components of the travel time, namely, walk to
origin, wait at the stop, on-board the bus and walk to destination, and (b)
different OD-pairs.

− Sensitivity of the model to changesin service characteristicsand system
conditions. In particular, we run the model using the same case, but the
frequencies and the service irregularity are increased. The goal of these specific
experiments is to study whether results and conclusions of the previous one also
hold under these conditions.



Fig. 1 Case of Rivera

Given that our model has a stochastic nature (given by the inter-arrival times of
passengers to origins and the travel times of buses along thestreet segments), the
outputs are samples of (unknown) probability distributions. Therefore, for each
experiment we run 100 independent executions, which produce results that are
summarized by their mean and standard deviation. These values are used to build
confidence intervals of 95% level which are finally used forcomparisons. Note that
more elaborated methodologies for comparisons have been proposed in the
simulation area, either for pairwise as for multiple configurations (Law, 2006).

3.2 Results from current system

Table 1 shows mean values corresponding to travel time averaged over the 100
independent executions. The third column shows the size of the half confidence
interval built as explained in Section 3.1. Note that traveltime of each independent
execution is averaged over all the passengers of the simulation. Therefore, it is a
significantly aggregate measure because it sums up very different values
corresponding to different OD-pairs. Small confidence intervals may be also



explained by this fact and by the high number of independent replications. We can
observe that travel times range from 43 to 63 minutes, which is a reasonable value,
taking into account the size of the city, the walking distances given the zonal
division, and the headways of the transit system.

Table 1Mean total travel time and confidence interval for the six models

Model Mean (secs.) Half conf. interval

1. RTI-Allways 2589.03 3.03

2. RTI@origin 2612.59 2.99

3. RTI-1line 2625.36 3.20

4. STT 2693.29 3.30

5. RTI@stops 2960.34 3.35

6. FBA 3778.66 5.11

As we may expect under this low frequency scenario, saving intravel time can be
obtained using real-time information. In particular, models RTI-allways,
RTI@origin and RTI-1Line exhibit very similar results. Model STT causes a small
travel time increase, and finally, models RTI@stops and FBAshow an even higher
increase, particularly the last one. Note that even though model RTI@stops
considers real-time information, since users do not schedule their departure, the
result is worse than the one of model STT.

Figure 2 compares average results disaggregated by stage oftravel. We can
observe that again, results from models RTI-allways, RTI@origin and RTI-1Line
are very similar, even at the different stages. The main saving with respect to other
models is in terms of waiting time, since in these models users schedule their arrival
based on real-time pre-trip information. Model STT presents a slight increase in
waiting time, since users schedule their departure based onthe static timetable.
Model RTI@stops increases even more the waiting time, sinceusers do not
schedule their departure. Real-time information only at the stop does not seem to be
useful in this case; this is probably due to the low frequencies. Finally, users that
plan their trips using a frequency-based approach, experience a similar waiting time
as in model RTI@stops, but they have a higher on-board traveltime since they
board the first bus that reaches their destination.

In order to compare the models from another non-aggregated point of view, we
selected five OD-pairs with different characteristics, namely, geographic distance
between origin and destination, and service availability (lines, frequencies). Figure 3
plots for each of these pairs (identified by their origin anddestination) mean total
travel time of the six passenger behaviour models. We can observe that the tendency
already observed in Table 1, also holds for different OD-pairs. As we may expect,
larger differences in the graphic shapes can be observed between the first and the
last OD-pair, which in fact are the ones having the minimum and maximum distance
between origin and destination respectively.



Fig. 2 Average total travel time by stage of travel

Fig. 3 Average total travel time for different OD-pairs

Despite the results observed above and the conclusions which may be drawn from
them, we also investigate the waiting time histogram of the “extreme” models RTI-
allways and FBA and the “intermediate” model STT (see Fig. 4). The waiting at the
stop is usually considered as the most onerous component of the total travel cost and
it is also the most influenced by real-time information. Based on these results, we
can verify that users with better information on average experience lower waiting
times than less informed users, i.e. smaller waiting time values are experienced by
much less users (in the order of one third approximately). Moreover, the waiting



time experienced by users which have static timetable information is very similar to
the best results obtained by model RTI-allways. This somehow suggests that by
using the static timetable information only, the improvements with respect to the
frequency-based behaviour is greatly improved. Also, the magnitude of that
improvement is larger than the one that can be obtained by using real-time
information with respect to the model of static timetable. It is worth mentioning that
this observation holds for a scenario of high regularity andlow frequencies.

Fig. 4 Waiting time histograms for different passenger behaviourmodels

3.3 Higher frequencies

With the aim of investigating the differences among the six passenger behaviour
models in a scenario of higher frequencies, we multiplied byfour the original ones
of the case of Rivera, thus obtaining values ranging from 5 to15 minutes. As we can
observe in Table 2, results from all models but FBA are very similar, in fact,
confidence intervals are overlapped. Models with real-time information (RTI) do
not improve user’s travel time, when compared with the modelbased on static
timetable (STT). Model FBA obtains significantly worse results.

Figure 5 shows that very similar results are obtained even atthe level of stage of
travel. This strongly suggests that under a scenario of highregularity and high
frequencies, the main factor which influences the improvement in travel time is the
availability of timetables, either dynamic (updated in real-time) or static.



Table 2Mean total travel time and confidence interval for higher frequencies

Model Mean (secs.) Half conf. interval

1. RTI-Allways 2389.26 2.54

2. RTI@origin 2393.26 2.46

3. RTI-1line 2399.17 2.65

4. STT 2439.69 2.51

5. RTI@stops 2423.92 2.41

6. FBA 3135.37 3.62

Fig. 5 Average total travel time for higher frequencies

3.4 Higher irregularity

In this experiment we simulate a scenario of higher service irregularity, meaning
that effective timetables differ from the static ones to a higher extent. This may be
due mainly to heavy traffic conditions and it is simulated inour model by increasing
the standard deviation parameter of the normal probabilitydistribution which
represents the bus travel time along network links.

As we can observe from Table 3, mean travel time increased 14%in average,
with respect to the current system. The main cause of this fact is that the system
appears to be less reliable; this can be observed in Fig. 6, which clearly shows that
waiting time is the main component which contributes to the overall time increase.
Moreover, the tendency already observed in the experiment of Section 3.2 does not
hold here. Passengers that do not update their decisions based on real-time
information (models RTI@origin and STT) experience the worst increase with
respect to the more regular scenario, which is a reasonable expectation.



Table 3Mean total travel time and confidence interval for high irregularity

Model Mean (secs.) Half conf. Interval % increase w.r.t.
current system

1. RTI-Allways 2972.40 4.05 15

2. RTI@origin 3037.10 3.75 16

3. RTI-1line 2979.42 4.07 13

4. STT 3159.30 3.92 17

5. RTI@stops 3219.14 4.07 9

6. FBA 4189.05 6.07 11

Fig. 6 Average total travel time for high irregularity

4 Conclusions and future work

We have presented an experimental evaluation of the impactsof real-time
information in transit systems from the perspective of users. The study is focused on
scenarios concerning small cities, where transit systems have low frequencies, are
not congested and operate with high regularity. Six variants (models) of passenger
behaviour concerning information availability were proposed an implemented,
based in a common framework of discrete event simulation. The models are simple
an efficient, which contributes to facilitate the validation and experimentation. The
experiments aim to compare results of the six models in termsof average total travel
time and respective confidence intervals. Also, non-aggregated measures are
analysed (different stages of travel and different OD-pairs) to support the
conclusions.



Main findings are that in regular systems with low frequencies, simply by
publishing the static timetables and by encouraging to use them, significant saving
in terms of total travel time (about 29%) can be obtained, with respect to current
practices where users plan their trips by adopting a frequency-based approach. The
most sophisticated scenario attains an even greater saving(45%) with respect to
current practices. This scenario assumes that users have access to real-time
information at any stage of their trips, which requires having mobile phones or
displays at the stops, and also assumes that an accurate estimation of arrival times is
computed and broadcasted to users. It is worth noting that the frequency-based
approach used in our model assumes a behaviour which impactsnegatively in total
travel time: users take the first bus which leads to destination, because they consider
that waiting time is the most onerous component. In general terms, we can say that
even though real-time information enables to save travel time, an intermediate
alternative which publishes timetables and encourage to use them seems to be very
effective and doubtlessly cheaper in terms of infrastructure requirements. This
statement is reinforced for transit systems with high frequencies. Finally, real-time
information turns itself more relevant under the presence of high irregularity of the
transit services, where users that adapt their decisions based on updated information
have less chances of experiencing an increase in total travel time due to irregularity.

As future work, we identify several lines. Tests with other cases are needed in
order to investigate whether conclusions formulated in this work also hold for
similar scenarios. Applying other state-of-the-art methods for modelling passenger
behavior to the case of our study, would give additional validation of the
conclusions; also, complexities not considered by the models proposed in this work
(e.g. congestion or different cost perceptions) could be included. Experiments with
larger cases is a pending task, in fact, all published studies deal with small or
medium sized cases. This poses at least two challenges: the computational cost of
running a large model (more than 100 lines) and the processing of results, which
requires a more detailed analysis since different OD-pairsmay have very different
trip patterns. Finally, a graphical validation and experimenting tool would be very
useful. Transit systems have an intrinsic geographic characteristic, therefore a GIS4-
based tool which shows paths of different OD-pairs contributes to increase the trust
in the developed models. Our group is currently working on some of these research
lines.
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Appendix A Passenger behaviour Models: detailed description

Model 1, RTI-allways:

1. At the origin centroid, the passengerchecksreal-time information about the
transit system.

2. The stops connectedto the origin centroid which are unreachabledue to
temporal reasons are discarded. Among the resulting stops,the passenger checks
for the lines that lead to destination and selects the one that minimizes the total
travel time.

3. The passengerholds at the origin centroid a reasonabletime in order to
coordinate its arrival to the stop with the arrival of the bus. This time is not
computed as waiting.

4. Walk to theselectedstop.
5. While waiting at the stop, for each bus that passesfrom there and leads to

destination (independent of the original decision), the passenger compares the
arrival time to destination using that line, against arrival times of the other buses
which are going to arrive. If a better alternative (in terms of total travel time and
considering real-time information) is approaching the stop, the passenger skips
the current bus and repeats this reasoning for the next bus which arrives to the
stop and leads to destination. If there are not better upcoming alternatives, the
passenger takes the current bus.

6. The bus stopsat destination,the passengeralights and walks to its destination
centroid.

Model 2, RTI@origin: Identical to model 1, except for the behaviour at the stop.

5. While waiting at the stop, the passengeronly takesthe busof the line that was
selected at origin.

Model 3, RTI-1line:

1. At theorigin centroid,thepassengerselectsthe line which minimizestotal travel
time to destination, based on static information. For each line, the waiting time is
considered as the headway (worst case).

2. The passengerchecksreal-timeinformationaboutthe selectedline andholdsat
the origin centroid a reasonable time in order to coordinatethe arrival to the stop
with the arrival of the bus. This time is not computed as waiting.

3. Walk to theselectedstop.
4. Onceat the stop,the passengerchecksagainthe real-timeinformationaboutthe

selected line and remembers the corresponding arrival timeof the bus for future
comparisons.



5. Whenevera bus arrives to the stop, if it belongs to the line selected,the
passenger boards. If not, but it is a line that leads to destination, the passenger
compares the remaining travel time using that line, againstthe travel time of the
selected line. If it is better, she/he takes the alternativebus; otherwise, continues
waiting for the one selected originally.

6. The bus stops at destination,the passengeralights and walks to destination
centroid.

Note that information about the static timetable is not usedin this model.

Model 4, STT: Almost identical to model 2, but using static information.

Model 5, RTI@stops:

1. Identicalto model3.
2. Walk to theselectedstop(do not hold at origin).
3. While waiting at thestop,thepassengerbehavesasin step5 of model1.
4. The bus stops at destination,the passengeralights and walks to destination

centroid.
Note that information about the static timetable is not usedin this model.

Model 6, FBA: Almost identical to model 5, except for the behaviour at the stop.

3. Whenevera busarrivesto thestopandbelongsto a line that leadsto destination,
the passenger boards, independent of the travel time.
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