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Abstract We study the influence of real-time information servicesem\the
performance of transit systems from the users' persped&tesfocus on bus systems
and consider services which provide updated arrival timdwfes to stops. Six
variants of a passenger behaviour model are proposed andenrapted,
representing different degrees of information avail&piliTo capture the dynamic
characteristics of the system, the passenger behaviouelni®dkmbedded into a
discrete event simulation framework. We perform a compmsive set of
experiments, using a small city with 13 bus lines as a casdysflhe impact of
different assumptions concerning information availépil{in particular real-time
information) is analysed in terms of user travel time. We several scenarios, and
perform the analysis in terms of both aggregated and noreggted measures.
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1 Introduction

Nowadays developments on Information and Communicatiochi@ogies allow
easy access to information about transit operations, whight be changing the
way travellers choose services and routes in a network.r8lewe-line services are
currently available for transit users worldwide. Thesevises, which are known as
Advanced Public Transportation Information System (ARTT®ppola and Rosati,
2010) provide information (either static or dynamic) aslvesl suggested decisions
which can be used by transit passengers to improve differgmects of their trips,
namely travel time, crowding or a generalized cost. The agpéent of APTIS
involve large investments, therefore its assessment is rdatary task for the
transit authorities and the government.

We focus on such services which provide real-time infororatlike those
implemented in Transantiag@and iBug, related to transit systems based on buses.
These services provide information about the state of thtesy, usually consisting
on updated arrival time of buses to stops, which can be aegdsgtransit users at
any stage of their trip or at specific ones. Currently, défdg types of users have
access to information at different stages previous andiming their trips. For
example, some users might have access to updated informthtiough a computer
at the origin, displays at the bus stops, or using mobileadsvanywhere. Usually
this information is broadcasted from an operation centrgichwv receives updated
positions of the buses and performs estimations based @t®dtravel times over
the network.

Evaluations of the impact of APTIS from observed data can dend in
(Breakwood et al., 2014; Watkins et al., 2011). In this waekd with a different
approach, we contribute towards the evaluation based otedettmodelling of the
interactions between passengers and buses. Thus, we @&nthéatransit system
based on data related to the services, the demand and hgigotheut the passenger
behaviour. The study is focused in the point of view of thersistherefore we left
aside the analysis of the implications over the operatoite,se.g. the fleet
management.

1.1 Literature review

Two main approaches can be distinguished in the literatoreyaluate the impact
of real-time information over transit users, with goals i&amto the one of this study.
In one hand, analytical approaches aim to model the systeh@@mnact conclusions
about it, based on mathematical formulations and propettiat can be derived
from them. On the other hand, dynamic models representiagetiolution of the

system as time advances, enable to compute several measualyy based on
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simulation. In the following, we review the main studies eifall into these
categories.

In (Hickman and Wilson, 1995), the authors model a singleidor including
issues related to information content (expected depatitines and expected running
time of buses), place of information (in the terminal andbmard the vehicle) and
information accuracy (low and high level of accuracy in prting travel times).
These aspects of the problem are represented by differempaments of a
probabilistic path choice model which is used to simulateaaeccomprising a
network of five nodes, corresponding to part of the trangdtesm of Boston.
Different scenarios concerning the issues stated abovsiardated, and results are
evaluated in terms of several independent replicationf@fperiment. In general
terms, observed gains in travel time are not greater than 3¥nwreal-time
information is available, which is considered by the awh@s a modest
improvement. The results are statistically significanheTauthors recognize the
difficulty of arriving to general conclusions based on exments with a single case,
and they suggest other scenarios where the usefulness lefnmeainformation
should be evaluated, namely, schedule of departure froginoand reduction of
passengers’ anxiety associated with the uncertainty o$itr&ravel.

The study of Gentile et al. (2005) proposes an analyticaméwork which
generalizes the assignment model under the presence of @otmmes (Chriqui and
Robillard, 1975). The authors develop a formulation of thepsmodel, assuming
that passengers do not take the first bus which lead to @éistm instead, when
real-time information is available, they can choose a diffé line that is going to
pass by the stop. A numerical example is presented, baskd tase of Sioux Falls,
which comprises 24 nodes and 76 arcs. The experiments aiithsstoate the effects
of real-time information availability and service regiitarover the network loading
and the passenger’s travel time. Improvement in total tréwee when real-time
information is available is less than 1%. Moreover, the argliound that the impact
of service regularity and the availability of real-time danfnation is less relevant for
short distance trips.

In (Coppola and Rosati, 2010), the authors perform an etiatuaf APTIS
based in a simulation framework which comprises three mamponents: (a) the
network performance sub-model, which reproduces the lttaxe of the buses over
the links, (b) the operation control centre, which predietsival times and
occupancy levels of buses, and (c) the path choice sub-meadeth represents
passengers’ decisions based on a random utility model. Tty s done over a
case related to the city of Naples, which comprises 11 zomesSalines. The
resulting network, after exploding the underlying diactico graph (a specific
structure used to represent the temporal characterisfitbeotransit service) has
about 38000 nodes and 75000 links. The experiments simubatdours
corresponding to the morning peak hour. Six scenarios argiest, considering
different conditions regarding service irregularity,dnfhation on waiting time and
information about bus occupancy. The results indicate ghaings up to 12.5% can



be obtained when real-time information is available. Ineyah waiting time is
increased, while on-board travel time contributes to desmahe total time.

In (Cats, 2011), a random utility model is proposed for reprging passenger
decisions at any stage of the trip. The methodology is agptigCats et al., 2011)
to a case study about the metro of Stockholm, which comprisdmes, 210
platforms and 100 stations. The experiments considerrdiftdevels of provision of
real-time information (platform, stop, and network) andcalifferent operational
conditions (the special case of service disruptions isistl)d The simulation
consists of 10 independent replications of a period of 3 fi0lpnclusions are that
path shifting and time savings up to 11% may be obtained byigirg real-time
information to the transit users. In particular, that imf@tion appears to be very
useful in cases of service disruptions. The authors rezeghie needs for validation
with a system-wide case study and real-world data.

More recently, Chen and Nie (2015) developed a model aimestudy the
influence of partial information over transit users. Thentepartial information
refers to the fact that real-time information can be avadainly for a subset of lines
from the whole system, thus generalizing the assumptiorSentftile et al. (2005).
Since partial information is provided, the best passengdh o reach destination
may include several alternative lines, which leads to tredlrfer computing optimal
hyperpaths (Nguyen and Pallotino, 1989) under this scen@tierefore, the authors
propose an algorithm for such calculation. Moreover, thegvigde a sufficient
condition to exclude cycles, which may appear under pardizhilability of
information. Numerical results are reported using bothlkaral real sized instances,
in particular the bus network of Chicago which has 125 lidéain conclusions are
that real-time information contributes to attract morersde faster lines with lower
service frequency and it is more effective in faster lindse Ruthors also conclude
that benefits of real-time information in reducing the tatavel time are very small
in the particular case study. Nevertheless, they ackn@melelat potential gains due
to scheduling departures should be investigated, sinsefehture is not included in
their model.

In general terms, analytical models showed to be restediivrepresent several
real-time characteristics of the systems. Also, classisaignment models (Spiess
and Florian, 1989) are difficult to adapt in order to repredbe dynamic nature of
passengers’ decisions when they face real-time informafiberefore, mesoscopic
models have proved to be the most suitable alternative toskd in this context.
These models usually combine the discrete event simulagaradigm with
behavioural models like those based on random utility $heoioptimal strategies.

1.2 Motivation and statement of contribution
The motivation of this study is twofold: (a) evaluation ofetleffect of real-time

information services over transit users in small cities of cegion, and (b) using
state of the art methodologies concerning transit systenreiting and simulation.



The former leads to consider particular characteristi¢h vdspect to both transit
service and users. We focus in systems which operate a ntedarmber of lines,
not very overlapped, with relatively low frequencies. Cesigon is not usual,
neither at the road level nor at the bus level (i.e. capacitysiufficient to
accommodate the demand). From the passenger point of viesm though the
system operates with low frequency, users do not considetable information,
mainly because it is not published. Therefore, the usuadgrager behaviour can be
considered as frequency-based (Nuzzolo, 2003) and (duketsite of the city)
transfers between lines are not usual. Moreover, we congfde fact that new
investments on infrastructure (e.g., provision of reaeti information) are under
consideration. The potential benefits these investmerdy mtroduce, in some
cases require that transit users have access to techndilagynobile devices; but
different degrees of technology availability is presentoas the inhabitants of the
cities. Therefore, a rational assessment of the gains that ke obtained by
providing real-time information under this scenario, dddae done.

The modelling of the scenario under consideration shouldabeaealistic as
possible. Simulation is the most suitable alternative todehothe dynamic
characteristics of transit systems with real-time infotiora since classical
assignment models (e.g. Spiess and Florian, 1989) ass@adysttate operations.
The representation of passenger behaviour is the critizalponent of the whole
model. The existing passenger behaviour models have beeessiul in terms of
realism, at the expense of high computational and calimatquirements. Some of
them do not model relevant issues of our scenario, like wetssregarding
departure from origin and selection of origin stop. Morapvedue to high
computational requirements, several independent runsddfieult to perform,
which precludes a statistical analysis of results (Law,806inally, some authors
recognize the need for an analysis at a system-wide levielg usal data. Transit
systems have a complex structure comprising several ttignpa and several bus
lines, which entails complex interactions. Various outpueasures should be
computed and compared in order to obtain a valid assessment

The contribution of this work is a comprehensive experirabavaluation of the
influence of real-time information services over the tiaagstem performance from
the users’ point of view, using state of the art and sound atktlogies. We propose
six variants of a base passenger behaviour model, whichesepts different
situations of information availability at different stag®f travel. The proposed
model allows for an efficient implementation and does nojuiee calibration. The
experiments are carried out with a test case relative to al siba for which real
data is available, particularly those corresponding tositademand. Conclusions
are drawn, paying attention to the magnitude of improvesasta consequence of
information availability. Both aggregated and non-aggted measures are analysed
in order to better support the conclusions.

The rest of the article is structured as follows. Section &dbes the model
proposed, including the six variants of passenger behavimder different
conditions of information availability. Section 3 des@# the experiments,



including the planning, results and specific conclusidnsSection 4 we formulate
general conclusions and we state future work. Finally, Aylde A provides a
detailed description of the passenger behaviour modefsogem.

2 Modelling approach

Our model for evaluating the impact of different degreesnédrimation availability

over the performance of the transit system from user’s getspe, has three main
components which deserve detailed explanation: (a) thensitrasystem

representation, that includes the network of lines alont whe characteristics of
the services and the demand, (b) the passenger behaviowl,mddch represents
the steps followed by passengers to reach their destirsafiom their origins, and
(c) the discrete event simulation model, which performs maagyic interaction of

both sub-models (a) and (b). In the following, we explain é&ail each one of these
sub-models.

2.1 Transit system representation

We represent the bus network by coding the lines over the siakt network,

whose segments include street direction and an estimafitireanean travel time.
This value is used as parameter for a normal probabilityridigion, in order to

model variations in bus travel time due to different factiike driver characteristics
or traffic conditions. This is one important source of ramoh@ss of our model, and
it is the feature that affects passenger behaviour and mygerformance under
different degrees of information availability. The buspstaare modelled explicitly
and they are connected through walk arcs to zone centroidthwhpresent origin

and destination places. Each line can have either forwaddbackward directions
(not necessarily using the same streets) or a single cirditaction. Moreover,

each line has a frequency value (or its inverse, the headwatynetable according
to its frequency, and its sequence of stops. The timetabhtessthe arrival time of
buses to every stop of the line within the modelling time bomni, based on a given
initial time (first bus departure) and the fixed travel tinoé each line segment.
Another relevant component of the transit system is the dembn our case, it is

represented as an origin-destination (OD) matrix, whictpresses rates of
individual trips from origins to destination. The demandeépresented at the level
of centroids and each value is fixed within the whole timeizmn. Each element of
this matrix is called OD-pair.

2.2 Passenger behaviour model
This sub-model is a critical part of the whole model, sinceosles the way in which

passengers interact with the transit service. Severatdgyof system performance
(in particular, travel time) are affected by decisions tak®y users, therefore a



realistic modelling of those decisions is mandatory. Adestdan Section 1, static
assignment models do not allow for representing dynamiaacheristics of the
interaction between passengers and buses, like those whéchresent when real-
time information is available. Therefore, dynamic assignnmodels arise as the
most suitable alternative. Among them, we consider theadled schedule-based
transit assignment models, which take as input a detailpdesentation of the
service (the timetable) and the demand, potentially végiab time. A relevant
concept in this context is the bus run, which refers to theifipedeparture of a bus
to perform the service of a given line at a given time. Accogdio (Nuzzolo and
Crisalli, 2004), to model transit services at the run le¥kére are three types of
system representations. The diachronic graph (Nuzzoldrarsdo, 1994) is a highly
structured model which comprises a service sub-graph, adeérsub-graph and an
access/egress sub-graph. The dual graph representatiez 4 al., 1996) includes
dual nodes which represent the runs, and links which modeé tcongruence
relative to arrival/departure times of buses at stops. At, ldhe mixed line-
based/database approach (Tong and Richardson, 1984) resnka single
topological line representation with temporal informatielative to bus movements
over the network. Main differences among these models ajehé management of
the trade-off between complexity of computer implementatind efficiency, and (b)
support for representing the passenger behaviour, incpéati the path choice. In
the context of schedule-based assignment models for tisystems, a path between
origin and destination centroids is defined (Nuzzolo ands&ik, 2004) by the
sequence of physical network nodes (including centroids stops) as well as
arrival/departure times from/to them. A standard asswnpith the literature is that
passengers always seek to minimize a measure (or conversakimize a utility)
when choosing the way for travelling from origin to destioatusing a given set of
transit lines. In this context, decisions may refer to departime from origin,
initial bus stop, line (or set of lines) to take, and so on.hNitthe shedule-based
approach, a common assumption is that passengers thinkns &f single paths.
On the other hand, in the frequency-based approach (wheszpger do not know
the line timetables), a typical assumption is that passengank in terms of
strategies (Spiess and Florian, 1989). In order to choosagéespath, passengers
are assumed to apply shortest path algorithms over a netwloidh may change its
attributes (e.g., cost) as time advances. Moreover, inrotdemodel different
perceptions of such attributes, a common accepted metbgylas the Random
Utility Theory (Domencich and McFadden, 1975).

In this work, we propose a simple model for both service repmétion and
passenger behaviour, mainly related to the line-baseatidae approach, and more
specifically based on all-or-nothing assignment with dyita rescheduling. This
means that passengers always take decisions about a satgland such decisions
are updated as the time advances, which entails that tréagés are performed
(walk, wait, board, etc.) and information about the statehef system is updated.
Under this general model we instantiate six variants whiepresent different
assumptions, most of them conditioned by different degreésinformation



availability concerning the transit system. In the contekthis study and in the
light of its goals, the proposed model and its variants (aiatbed models in the
remaining part of the paper) have the following advantages:

Simplicity, which entails they are eas' to understan anc to validate

Suitable for modelling the characteristic of our interest where the effective
timetables do not differ significantly from the nominal ene&ilso, the transit
system is assumed to operate without congestion in termgsofdypacity.
Consister with the passengt behaviou unde consideratior where user: da
not use naturally information about timetables, even urttier presence of
medium-to-low frequencies.

Since the mode is simple it is alsc eas' to implemen anc to extenc in ordei to
include additional variants concerning passenger bebavio

Becaus the mode allows for ar efficient implementatior this enable to make
several experiments, which is needed in order to have titatly significant
results.

In the following, we explain the six proposed models in geheerms;

Appendix A gives a more detailed description.

1.

Real-time informatior al any stage (RTl-allways): User: with real-time
information about all the lines of the system at any stagehefrttrip. This
represents users that have a mobile device, which can beangadhere.
Real-time¢ informatior only al the origin (RTI@origin ): User: thai car acces
real-time information about the system only at the origihisTrepresents users
that access the information exclusively through the compuat their
home/office.

Real-time informatior of a single line (RTI-1Line): User: with real-time
information of a single line at any stage of their trip. Thispresents some
services where users have to pay for obtaining real-timerimition about a
given line.

Static timetable (STT): No real-time informatior is available User: choos:
lines using a static timetable and no rescheduling is pedol

Real-time informatior only at the bus stog (RTI@stops): User: with real-time
information only at the bus stops, through screens providgdthe transit
system infrastructure.

Frequency-bast approac (FBA): No timetable are available User: take
decisions using a frequency-based approach.

Moreover, in models 1 to 4 the users schedule their depdirtome origin using pre-

trip information, while in models 5 and 6 users begin to walkte bus stop when
they appear in the origin centroid. Note that model 1 reprsses somehow

sophisticated variant of passenger behaviour, while médetpresents the most
uninformed passenger. It is worth noting that none of thesmlets consider

transfers, i.e. users travel from origin to destinatiomgsa single line; this greatly
simplifies the models and the analysis of results.



2.3 Discrete event simulation model

In order to model the dynamic characteristics of the systhm ifecycles of buses
and passengers are embedded into a discrete event simufi@ioework (Tocher,
1963). The simulation schedules and executes the eventsdaug to the times
stated by the problem parameters (line network, demandpasdciated probability
distributions. To do that, several events are designetieriounded (its time of
occurrence can be predicted) or conditioned (the executepends on a particular
condition). In the following, we describe roughly thosetjcles:

- Bus: For eacl line giver by its stof sequenc anc timetable the mode
schedules the starting of each bus run (event StartBusRWMe).are not
concerned with fleet management issues in this work. Buspsaa at the initial
node of the route, at the time indicated by the correspondingwhen the bus
finishes its route, simply disappears in the final node. Theent
BusArrivalToStop executes the corresponding interactigith passengers and
schedules the arrival to the next stop according to a randaimevdetermined
by the mean travel time of the corresponding link and the abudistribution.

— PassengerFor eact OD-pair initially the first passenge arrival to the origin is
scheduled by means of the event PassengerArrivalToONgiren this event is
executed for each OD-pair, the next arrival is schedulechqusi negative
exponential distribution which rate is the value stated e ® D-matrix; this is
other source of randomness of our model. Once at the orlygnpaissenger plan
her/his trip and begin to walk to the origin stop (event
PassengerDepartsFromOrigin) or waits some time perioderiéng on the
specific behaviour model. Once at the stop (event PassgénmgeToStop), the
passenger executes her/his plan which may entail a changecisdion for each
bus that passes by the stop. For passengers already on-tidhedcurrent stop
is destination, they alight and immediately begin to walk diestination
centroid.

2.4 Computer implementation

The model was coded in C++, using the EOSimulator libtatyrelevant aspect of
the model is the representation of the dissemination ofgéhétime information. In
real systems, typically the location of each bus is repaiteal central planning unit,
which uses the information to predict arrival times to sujosmt stops. These
predictions are then broadcasted to users. In this cortextaccuracy of predicted
arrival times depends (among other factors) on the frequeinc which the
information is reported by the buses. Analogous, as theigieztl information is
more recent, the more accurate will be the data availableeosu This aspect of the
real system is modelled in (Coppola and Rosati, 2010) by aar&@jon Control

3 http://mww.fing.edu.uy/inco/cursos/simulacion/eosmml/index.html



Center, which represents the central unit that gathersrrvdtion, performs
estimations and broadcasts to users. In our model we useptesiapproach: once a
value of travel time along a network link is sampled, the esponding dynamic
timetables are immediately updated. These timetables\aiéahle to all users, in
the models where real-time information is considered te @écisions. This greatly
simplifies the model and its implementation. Its main causce is that numerical
results corresponding to users' travel time are underasthin the models which
consider real-time information.

The travel time is recorded by using the Histogram featuree@Simulator.
Several histograms accumulate data from every passengegraged by the
simulation, discriminating the travel time by its compotsewalk from origin, wait
at the stop, travel on-board and walk to destination. Déffer independent
executions of the simulation can be performed by changiegrémdom seed. The
parameters which are affected by the seed are the bus timelatong the street
and the inter-arrival time of passengers to the origin césr

3 Simulation experiments and results
3.1 Methodology and goals

We test the simulation model over a case related to Riveragliiy, a small city

with 65,000 inhabitants approximately. Its public tranggtion system has 13 lines,

some of them with overlapping segments (see Fig. 1). The huateprises 84 zone
centroids and 378 OD-pairs, which represent the transitadeimwithin a time
horizon of 12 hours. Line headways range from 20 to 60 minutée complete
model has 522 nodes and 1528 arcs. A single execution of tleIngé hours of
simulation time) takes 18 seconds (average) in a Core i7 Bz @@mputer.

The goals of the experiments are the following:

— Evaluatior of the transi system' performanc unde the hypothesi of the six
passenger behaviour models explained in Section 2.2. Wgsanthe results in
terms of travel time, using both aggregated and non-agtgdgaeasures. The
former provides a framework for comparison among diffen@oidels in terms
of a single and specific value, namely, mean travel time. [atter allows for a
detailed analysis, enabling to discover potential unseetsf and therefore it
complements the aggregated approach. The detailed analfysésults is done
in two directions: (a) different components of the travehdi namely, walk to
origin, wait at the stop, on-board the bus and walk to destina and (b)
different OD-pairs.

— Sensitivity of the mode to change in service characteristic anc systen
conditions. In particular, we run the model using the samsecdut the
frequencies and the service irregularity are increased.gbal of these specific
experiments is to study whether results and conclusionseoptevious one also
hold under these conditions.



Fig. 1 Case of Rivera

Given that our model has a stochastic nature (given by ther-arrival times of

passengers to origins and the travel times of buses alongttbet segments), the
outputs are samples of (unknown) probability distribusiofherefore, for each
experiment we run 100 independent executions, which pedesults that are
summarized by their mean and standard deviation. Thesewvalte used to build
confidence intervals of 95% level which are finally used domparisons. Note that
more elaborated methodologies for comparisons have beepoged in the

simulation area, either for pairwise as for multiple coofigtions (Law, 2006).

3.2 Results from current system

Table 1 shows mean values corresponding to travel time gedraver the 100
independent executions. The third column shows the sizéefhlf confidence
interval built as explained in Section 3.1. Note that trareke of each independent
execution is averaged over all the passengers of the siomlatherefore, it is a
significantly aggregate measure because it sums up vererdift values
corresponding to different OD-pairs. Small confidenceeimals may be also



explained by this fact and by the high number of independepliaations. We can
observe that travel times range from 43 to 63 minutes, which ieasonable value,
taking into account the size of the city, the walking disesgiven the zonal
division, and the headways of the transit system.

Table 1 Mean total travel time and confidence interval for the sixdels

Model Mean (secs.) Half conf. interval
1. RTI-Allways 2589.03 3.03

2. RTI@origin 2612.59 2.99

3. RTI-1line 2625.36 3.20

4. STT 2693.29 3.30

5. RTI@stops 2960.34 3.35

6. FBA 3778.66 5.11

As we may expect under this low frequency scenario, savingaivel time can be
obtained using real-time information. In particular, misdeRTI-allways,
RTI@origin and RTI-1Line exhibit very similar results. MeldSTT causes a small
travel time increase, and finally, models RTI@stops and FBAw an even higher
increase, particularly the last one. Note that even thougidein RTI@stops
considers real-time information, since users do not sdeetheir departure, the
result is worse than the one of model STT.

Figure 2 compares average results disaggregated by stagavef. We can
observe that again, results from models RTl-allways, RTii@wo and RTI-1Line
are very similar, even at the different stages. The mainngawiith respect to other
models is in terms of waiting time, since in these modelssisehedule their arrival
based on real-time pre-trip information. Model STT preseatslight increase in
waiting time, since users schedule their departure basetherstatic timetable.
Model RTI@stops increases even more the waiting time, simgers do not
schedule their departure. Real-time information only atstop does not seem to be
useful in this case; this is probably due to the low frequesicFinally, users that
plan their trips using a frequency-based approach, expegia similar waiting time
as in model RTI@stops, but they have a higher on-board tréwed since they
board the first bus that reaches their destination.

In order to compare the models from another non-aggregaigd of view, we
selected five OD-pairs with different characteristicsmedy, geographic distance
between origin and destination, and service availabilibe§, frequencies). Figure 3
plots for each of these pairs (identified by their origin afektination) mean total
travel time of the six passenger behaviour models. We caerebshat the tendency
already observed in Table 1, also holds for different ODrpahs we may expect,
larger differences in the graphic shapes can be observededetthe first and the
last OD-pair, which in fact are the ones having the minimurd saximum distance
between origin and destination respectively.
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Fig. 3 Average total travel time for different OD-pairs

Despite the results observed above and the conclusionswidy be drawn from
them, we also investigate the waiting time histogram of txetreme” models RTI-
allways and FBA and the “intermediate” model STT (see Fig.T4e waiting at the
stop is usually considered as the most onerous componehné edtal travel cost and
it is also the most influenced by real-time information. Baon these results, we
can verify that users with better information on averageee®mce lower waiting
times than less informed users, i.e. smaller waiting timeesare experienced by
much less users (in the order of one third approximately)rddeer, the waiting



time experienced by users which have static timetable imfbion is very similar to
the best results obtained by model RTIl-allways. This somebaggests that by
using the static timetable information only, the improvensewith respect to the
frequency-based behaviour is greatly improved. Also, thagmitude of that
improvement is larger than the one that can be obtained bggustal-time
information with respect to the model of static timetabtds lworth mentioning that
this observation holds for a scenario of high regularity e frequencies.

B Modsl 1
f Modcl 4

300
B Modcl &

200

Masasngers

100

Wating time (Min))

Fig. 4 Waiting time histograms for different passenger behavinadels
3.3 Higher frequencies

With the aim of investigating the differences among the sissenger behaviour
models in a scenario of higher frequencies, we multipliedduwy the original ones
of the case of Rivera, thus obtaining values ranging from Btminutes. As we can
observe in Table 2, results from all models but FBA are vemilar, in fact,
confidence intervals are overlapped. Models with reaktimformation (RTI) do
not improve user’'s travel time, when compared with the mdukded on static
timetable (STT). Model FBA obtains significantly worse uks.

Figure 5 shows that very similar results are obtained evehedlevel of stage of
travel. This strongly suggests that under a scenario of hégularity and high
frequencies, the main factor which influences the improsenin travel time is the
availability of timetables, either dynamic (updated inl+ae) or static.



Table 2 Mean total travel time and confidence interval for highexqfiencies

Model Mean (secs.) Half conf. interval
1. RTI-Allways 2389.26 2.54
2. RTI@origin 2393.26 2.46
3. RTI-1line 2399.17 2.65
4. STT 2439.69 2.51
5. RTI@stops 2423.92 241
6. FBA 3135.37 3.62
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Fig. 5 Average total travel time for higher frequencies

3.4 Higher irregularity

In this experiment we simulate a scenario of higher servicegularity, meaning
that effective timetables differ from the static ones to ghler extent. This may be
due mainly to heavy traffic conditions and it is simulatedim model by increasing
the standard deviation parameter of the normal probabdistribution which
represents the bus travel time along network links.

As we can observe from Table 3, mean travel time increased ihd4&verage,
with respect to the current system. The main cause of thisisathat the system
appears to be less reliable; this can be observed in Fig. &hvdhearly shows that
waiting time is the main component which contributes to therall time increase.
Moreover, the tendency already observed in the experimieSection 3.2 does not
hold here. Passengers that do not update their decisionsd bas real-time
information (models RTI@origin and STT) experience the stancrease with
respect to the more regular scenario, which is a reasonapéegtion.



Table 3Mean total travel time and confidence interval for highgutarity

% increase w.r.t.

Model Mean (secs.) Half conf. Interval current system
1. RTI-Allways 2972.40 4.05 15
2. RTI@origin 3037.10 3.75 16
3. RTI-1line 2979.42 4.07 13
4. STT 3159.30 3.92 17
5. RTI@stops 3219.14 4.07 9
6. FBA 4189.05 6.07 11
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Fig. 6 Average total travel time for high irregularity

4 Conclusions and future work

We have presented an experimental evaluation of the impattseal-time
information in transit systems from the perspective of sis€he study is focused on
scenarios concerning small cities, where transit systeawve fow frequencies, are
not congested and operate with high regularity. Six vasigntodels) of passenger
behaviour concerning information availability were prepd an implemented,
based in a common framework of discrete event simulatioe. Mbdels are simple
an efficient, which contributes to facilitate the validatiand experimentation. The
experiments aim to compare results of the six models in t&fnaserage total travel
time and respective confidence intervals. Also, non-aggpedd measures are
analysed (different stages of travel and different OD<gaito support the
conclusions.



Main findings are that in regular systems with low frequescisimply by
publishing the static timetables and by encouraging to hemt significant saving
in terms of total travel time (about 29%) can be obtainedhwéspect to current
practices where users plan their trips by adopting a freqypbased approach. The
most sophisticated scenario attains an even greater sg¥b%) with respect to
current practices. This scenario assumes that users hasessado real-time
information at any stage of their trips, which requires hgvimobile phones or
displays at the stops, and also assumes that an accuraetisti of arrival times is
computed and broadcasted to users. It is worth noting thatfrdquency-based
approach used in our model assumes a behaviour which impegtgively in total
travel time: users take the first bus which leads to destinabecause they consider
that waiting time is the most onerous component. In generaig, we can say that
even though real-time information enables to save travektian intermediate
alternative which publishes timetables and encourage éachem seems to be very
effective and doubtlessly cheaper in terms of infrastngcttequirements. This
statement is reinforced for transit systems with high feegies. Finally, real-time
information turns itself more relevant under the preserfdeigh irregularity of the
transit services, where users that adapt their decisiosmsoban updated information
have less chances of experiencing an increase in total timeedue to irregularity.

As future work, we identify several lines. Tests with othases are needed in
order to investigate whether conclusions formulated irs thiork also hold for
similar scenarios. Applying other state-of-the-art methdor modelling passenger
behavior to the case of our study, would give additional datlon of the
conclusions; also, complexities not considered by the isqo®posed in this work
(e.g. congestion or different cost perceptions) could lobuded. Experiments with
larger cases is a pending task, in fact, all published studieal with small or
medium sized cases. This poses at least two challengesothputational cost of
running a large model (more than 100 lines) and the proogssirresults, which
requires a more detailed analysis since different OD-paiy have very different
trip patterns. Finally, a graphical validation and expeniing tool would be very
useful. Transit systems have an intrinsic geographic cherniatic, therefore a GfS
based tool which shows paths of different OD-pairs contgbuo increase the trust
in the developed models. Our group is currently working omemf these research
lines.
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Appendix A Passenger behaviour Models: detailed description

Model 1, RTl-allways:

1.

At the origin centroid the passengt check: real-time informatior abou the
transit system.

. The stop¢ connecte to the origin centroic which are unreachabl due to

temporal reasons are discarded. Among the resulting stopgassenger checks
for the lines that lead to destination and selects the ortentiramizes the total
travel time.

. The passeng¢ holds ail the origin centroic a reasonabl time in ordel to

coordinate its arrival to the stop with the arrival of the biihis time is not
computed as waiting.
Walk to the selecte stop

. While waiting al the stop for eacl bus thai passe from there anc lead: to

destination (independent of the original decision), thespager compares the
arrival time to destination using that line, against afriti@es of the other buses
which are going to arrive. If a better alternative (in ternfigadal travel time and
considering real-time information) is approaching thepstihe passenger skips
the current bus and repeats this reasoning for the next bichvalrives to the
stop and leads to destination. If there are not better upupralternatives, the
passenger takes the current bus.

. The bus stop: al destinatior the passengt alights anc walks to its destinatiol

centroid.

Model 2, RTI@origin: Identical to model 1, except for the behaviour at the stop.

5.

While waiting al the stop the passengt only take: the bus of the line that was
selected at origin.

Model 3, RTI-1line:

w

. At the origin centroid the passenge select the line which minimizes total trave

time to destination, based on static information. For eaeh the waiting time is
considered as the headway (worst case).

. The passengt check: real-time informatior abou the selecte line anc holds at

the origin centroid a reasonable time in order to coorditiaearrival to the stop
with the arrival of the bus. This time is nhot computed as agiti

Walk to the selecte stop

Once al the stop the passengt check: agair the real-time informatior abou the
selected line and remembers the corresponding arrival diintiee bus for future
comparisons.



5. Wheneve a bus arrives to the stop if it belong: to the line selectec the
passenger boards. If not, but it is a line that leads to da#tin, the passenger
compares the remaining travel time using that line, agdhestravel time of the
selected line. If it is better, she/he takes the alterndtive otherwise, continues
waiting for the one selected originally.

6. The bus stop: al destinatior the passengt alights anc walks to destinatiol
centroid.

Note that information about the static timetable is not ugetiis model.

Model 4, STT: Almost identical to model 2, but using static information.
Model 5, RTI@stops:

Identica to mode 3.

Walk to the selecte stoy (do not hold at origin).

While waiting al the stop the passeng¢ behave asin stef 5 of mode 1.

The bus stop: al destinatior the passenge alights anc walks to destinatiol
centroid.

Note that information about the static timetable is not usetlis model.

Eal A

Model 6, FBA: Almost identical to model 5, except for the behaviour at tlop s

3. Wheneve a bus arrives to the stof anc belong: to a line that lead: to destinatior
the passenger boards, independent of the travel time.
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