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Abstract Given a range of traffic related sustainability problems, policy makers 

need to know which measures should be taken to reach their objectives as much as 

possible. Multi-objective optimisation is useful to support these decisions, because it 

results in an overview of possibly optimal solutions. This Pareto set can be very 

large, especially if more than two (mainly opposed) objectives are involved. This is 

also the case when optimising infrastructure planning in a multimodal passenger 

transportation network, with accessibility, use of urban space by parking, operating 

deficit and climate impact as objectives. Methods are presented to derive problem 

knowledge from the Pareto set. This includes the best values per objective, average 

trade-off values between pairs of objectives and identification of the min-max 

solution. These methods make the Pareto set more useful as decision support 

information: they demonstrate the next step in multi-objective option prioritisation. 

An insight provided for a case study in the Amsterdam Metropolitan Area in The 

Netherlands is that it is possible to improve all aspects of sustainability 

simultaneously in comparison to the current transportation network: the current 

design is not part of the Pareto set. Next, improving travel time further can be done 

cost-efficiently, but reducing CO2 emissions is expensive when using measures 

related to multimodal trip making. Finally, increasing frequencies appears to be 

more effective to improve sustainability than introducing P&R facilities and train 

stations. 
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Multimodal passenger transportation networks · Multi-objective optimisation  
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1 Introduction 
 

Highly urbanised regions in the world nowadays face well known sustainability 

problems in the traffic system, like congestion, use of scarce space in cities by 

vehicles and the emission of greenhouse gases. This research focusses on the 

integration of transportation networks of cars, public transport (PT, which includes 

bus, tram, metro and train) and bicycles as a cost effective solution direction to 

alleviate these problems. 

When the infrastructure related to these measures is planned by decision makers, 

it is often current practice to design a few alternatives, have these alternatives 

assessed by a transportation model and choose the best performing alternative. 

However, the alternative is still likely to have room for improvement. This is the 

reason for applying optimisation techniques in this context. A multi-objective 

approach is adopted, because of the complex context of competing sustainability 

interests, like accessibility, liveability, environmental impact and costs. This results 

in a multi-objective, multimodal passenger network design problem. An extensive 

review of passenger network design problems is given in Farahani et al. (2013). In 

this review a classification of network design studies in literature is given, for 

example distinguishing between single-objective and multi-objective network 

design problems and between problems that involve a car network, a PT network or 

a multimodal network. 

The Pareto-optimal set is the outcome of such a multi-objective (MO) 

optimisation procedure, which contains all network solutions that might be optimal 

for the decision maker dependent on the compensation principle used to combine 

the objectives. In this paper the information needs of decision makers are identified. 

These needs are derived from literature and from three interviews with Dutch policy 

officers, who prepare decision making at three different local governments in the 

Netherlands (municipality of Amsterdam, city region of Amsterdam and province of 

Overijssel). Each of these needs corresponds with a certain type of information that 

supports the decision making process. The ultimate goal of this decision making 

process is to choose the final solution for implementation that best fits the policy of 

the region that is studied. 

Compared to the current practice in Dutch policy making in the field of 

transportation, using optimisation results in the decision making process has several 

advantages. First, all possible solutions are considered simultaneously based on the 

policy objectives and the defined decision variables, without knowing the exact 

preferences of the decision maker. The search process is not limited to only a few 

(often expert-judgment based) solutions, for which it is not known whether they are 

Pareto-optimal. Second, after optimisation the Pareto set can be used to interactively 

reveal consequences of choosing certain decisions or choosing preferred objectives. 

Third, suboptimal solutions are excluded beforehand, so no valuable time is used to 

discuss them. 

Disadvantages of using MO optimisation in policy making practice are the 

complexity and the work load. The methods and results are difficult to explain to 



 
 

 

decision makers, require long computation times and require a suitable 

transportation model for the region under study (that is fast enough and still has 

enough quality to be able to calculate objective values with enough accuracy). In 

addition to that, the process of investigating all possible measures among the 

involved stakeholders may be labour intensive. These possible measures have to be 

manually coded in the network of the transportation model (i.e. to define solution 

space). 

Visualisation techniques can help present the Pareto set in such a way that it 

provides insight to decision makers. Deriving these insights from Pareto set 

visualisations, also called manual innovization by Deb (2003), is a method where 

both common and different properties of all obtained Pareto solutions are identified, 

as well as where and how these similarities and differences occur. During the 

interviews with policy officers it became clear that visualisations of the Pareto set 

are useful, but in addition background information is needed for a correct 

interpretation. 

A next step is to mathematically analyse the Pareto set to derive useful, more 

general problem knowledge. Trade-off information between objectives is a common 

result that is derived from Pareto sets, but is not straightforward when more than 2 

objectives are considered (Wismans et al., 2013). In the interviews this information 

was valued as well, because this is related to social cost-benefit analysis: a decision 

support methodology that is often used in the Dutch infrastructural planning practice 

(Mouter et al., 2013). Such trade-offs are determined in this paper for a case study, 

as well as minimum values per objective, range covered per objective and 

correlation between objectives. 

Design rules for decision variables in relation with objectives are more 

complicated to obtain. Atashkari et al. (2005) identified such rules for a problem 

with a limited number of continuous decision variables. The mathematical structure 

of relationships between objectives, decision variables and constraints is analysed to 

discover useful design principles. Deb et al. (2014) constructed such rules by fitting 

functions to represent these relationships, which they call automated innovization. 

This method only works for optimisation problems with few continuous decision 

variables, so it cannot easily be applied to the multimodal passenger transportation 

network design problem, which has many discrete variables. In this paper 

mathematical techniques are adjusted in a way that they can be applied to Pareto 

sets that result from a problem with many discrete decision variables. During the 

interviews it became clear that policy officers are interested in so called ‘no regret’ 

and ‘always regret’ measures, i.e. measures that should always or never be taken, no 

matter which priorities are given to the (in this case four) objectives. Therefore for 

each decision variable the fraction of solutions in the Pareto set where that decision 

variable is active is determined, to indicate the effectiveness of the related measure 

in relation to all defined objectives simultaneously. 

Although such analyses provide more insight into the structure of the problem, 

in the end one solution that reflects the decision makers’ preferences best has to be 

chosen for implementation. The problem of choosing the best compromise solution 



 
 

 

to implement is rarely addressed in relation to the MO-NDP. During the interviews 

it was discovered that policy officers like to cope with a large Pareto set by pruning 

it step by step in dialogue with a decision maker. This can be done by setting 

additional bounds on objective values, as is done by Kasprzyk et al. (2013), and / or 

by including / excluding certain values for decision variables that are or are not 

politically desirable. If there are still multiple solutions left after this process, 

traditional methods can be used to choose the best compromise solution from the 

remaining solutions. 

Following the needs of decision makers to choose one final solution for 

implementation, the objective of this paper is twofold. The first objective is to 

enhance existing methods for decision support based on results from multi-objective 

optimisation, which help decision makers choose a final solution. The second 

objective is to analyse and understand a case study problem using information in the 

Pareto set. 

The remainder of this paper is structured as follows. In Section 2 the problem is 

defined and the case study is introduced. In Section 3 the results of the case study 

are presented, using various methods for decision support. First, the Pareto set is 

visualised. Second, more general rules are derived concerning relations between 

objectives and measures. Third, a step-by-step pruning method is applied to choose 

one final solution for implementation. In Section 4 conclusions are drawn 

concerning the methods and the case study. 

 

 

2 Problem definition 
 

2.1 Multi-objective optimisation  

 

The chosen multi-objective approach enables coping with the complex context of 

competing sustainability interests, like accessibility, liveability, environmental 

impact and costs. These 𝑤 objectives 𝑍𝑤 are not translated into a single objective by 

using weights for each objective, because the weights as well as the normalisation of 

the different objectives are arbitrary. Furthermore, tradeoffs between objectives can 

only be achieved by studying the Pareto optimal set (Coello et al., 2006). The entire 

decision space 𝑌 is searched during optimisation. Mathematically, the concept of 

Pareto optimality is as follows. Assuming two decision vectors 𝑦𝑖 , 𝑦𝑖′ ∈ 𝑌, then 𝑦𝑖 is 

said to (weakly) dominate (or cover) 𝑦𝑖′ iff 𝑍𝑤(𝑦𝑖) ≤ 𝑍𝑤(𝑦𝑖′)∀𝑤 (also written as 

𝑦𝑖 ≼ 𝑦𝑖′). All solutions that are not weakly dominated by another known solution 

are possibly optimal for the decision maker: these non-dominated solutions form the 

Pareto-optimal set 𝑃. 

 

2.2 Bi-level problem  

 

The transportation network design problem is solved as a bi-level optimisation 

problem (see also for example dell'Olio et al., 2006). The upper level represents a 



 
 

 

network authority that wants to optimise system objectives. In the lower level the 

behavioural response to a network design is modelled, where the travellers minimise 

their own generalised costs in the multimodal network. To this end, a combined 

modal split / assignment model is applied in the lower level (see Brands et al., 

2014a). The resulting equilibrium is a constraint for the upper level problem. 

 

2.3 Study area  

 

The case study area covers the Amsterdam Metropolitan Area in The Netherlands 

(Fig. 1). This area has an extensive multimodal network with pedestrian, bicycle, car 

and PT infrastructure. PT consists of 586 bus lines, 42 tram and metro lines and 128 

train lines, which include local trains, regional trains and intercity trains. Bicycles 

can be parked at most bus stops and at all train stations. A selection of PT stops 

facilitates park-and-ride transfers. Origins and destinations are aggregated into 102 

transportation zones. 

 

 
Fig. 1 Map of the study area, showing origins / destinations, railways, roads 

 

2.3.1 Decision variables 

In the network of the study area, 37 decision variables are defined related to transfer 

facilities or to PT facilities. For every potential network development, a decision 

variable is defined in advance. Opening / closure of train stations, intercity status of 

train stations and opening / closure of park and ride (P&R) facilities are represented 

by binary variables. For PT line frequency, a discrete set of choice options is 

predefined, depending on the expected load for that transit line. The characteristics 

of links, lines and stops that are not candidate locations are fixed at one value. 

Furthermore, the car and bicycle networks are assumed to be fixed. The resulting 

feasible region 𝑌 contains approximately 7*1013 possible decision vectors. 
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2.3.2 Objective functions 

The values of the objective functions are calculated based on loads and costs in the 

network for one hour in the AM peak. Four objectives are considered, namely total 

travel time (TTT, as a measure for accessibility), number of car trips to urban zones 

(as a measure for use of urban space for parking, USU), CO2 emissions (CE, as a 

measure for climate impact) and PT operating deficit (OpD, as a measure for cost 

efficiency). All objectives are to be minimised. 

 

2.4 Solution method  

 

The optimisation problem is solved using the evolutionary algorithm ε-NSGAII 

(Kollat and Reed, 2006). This method was earlier shown to outperform the well-

known predecessor of the algorithm NSGAII (Deb et al., 2002) when applied to the 

same case study in Brands et al. (2014b). This better performance especially occurs 

when limited number of function evaluations are applied. This is useful, because the 

lower-level transportation model in the case study has a high computation time. 

 

 

3 Results 
 

The optimisation algorithm produces a Pareto set as a result. From the Pareto set 

more general problem knowledge is derived. This helps to better understand the 

network design problem in a multimodal context and to finally choose one solution 

from the Pareto set for implementation in a multi-objective option prioritisation 

process. 

In total 2384 solutions were evaluated during the execution of the algorithm. 

From these solutions 210 were Pareto optimal (i.e. non-dominated). This Pareto set 

is an approximation of the true Pareto set, since it would take too much computation 

time to calculate all solutions and thus the true Pareto set is not known. 

 

3.1 Visualisation of the Pareto set 

 

The scatter plot shown in Fig. 2 is a common way to visualise a Pareto set, 

especially to show trade-offs between objectives. By using different colours for the 

dots in a scatter plot, one additional objective is included in the scatter plot (see Fig. 

2). Hettenhausen et al. (2009) earlier referred to this way of visualisation as decision 

map. A limited number of categories is defined for the 3rd objective, each 

represented by a separate colour. This type of visualisation can for instance be used 

to visualise the effect of introducing a constraint for the 3rd objective on the Pareto 

front of the two objectives at the axes, i.e. its effect on which solutions remain 

Pareto-optimal and their related outcome concerning the two other objectives.  

It can be observed that solutions with high CE only occur in an area of the plot 

with low OpD and medium to high TTT. On the other hand, a very interesting 

observation is that when only solutions with low CE are considered (i.e. less than 



 
 

 

1350 tons), still a large variation exists in scores for TTT and OpD. In other words, 

when an additional constraint is set for CE, there is still a choice between solutions 

with low TTT, with low OpD or trade-off solutions with intermediate values for 

both objectives. 

 
Fig. 2 A 2D scatterplot for total travel time and operating deficit, with a distinction between 

CE categories (also called decision map) 

 

A parallel coordinate plot (see Fig. 3) captures all 4 objectives in one plot, as used 

earlier by Kasprzyk et al. (2013). Normalisation per objective is required for this 

plot, because the four objectives have different orders of magnitude and different 

units. The normalised values range from 0 to 1, corresponding to the minimum per 

objective and the maximum per objective. When interpreting these normalised 

value, it should be noted that there is a difference per objective in terms of absolute 

difference (and that this absolute difference also depends on the unit). Furthermore, 

the impact of this absolute difference is different depending on the objective. This is 

especially relevant when weight factors are used to combine normalised objectives. 

In a parallel coordinate plot trade-offs between objectives cannot be directly 

observed like in a scatter plot, but using a colour scale to represent one specific 

objective value improves this. When looking at the colour distribution, it can be 

observed that high TTT implies low OpD, but usually also high USU. The relation 

with CE is less clear, but roughly TTT and CE are in line (as was earlier observed in 

the scatter plot). The ordering and colouring of the objectives can be changed, to 

emphasise different relations and therefore providing different insights. 
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Fig. 3 Parallel coordinate plot of the Pareto set: one line represents one solution, where the 

normalised values of the 4 objective values are plotted in the 4 columns. The lines are 

coloured using their value for total travel time 

3.2 Best value per objective  

 

The extent to which the formulated objective values can be improved indicates to 

what extent a more sustainable transportation network can be established by the 

selected measures. Therefore the minimum values per objective are compared with 

the objective values in the base solution (see Table 1). The base solution is the most 

likely transportation network that will be developed for 2030 when all known plans 

are realised. The relative value for OpD is determined by dividing the difference in 

OpD (compared to the base solution) by the total operating costs in the base solution 

(instead of the value for OpD itself, that can be both positive and negative). 

 

 

TTT 

(hours) 

USU 

(# of cars) 

OpD 

(euros) 
CE (tons) 

Base situation 250007 68720 -36594 1352 

Minimum 248034 67659 -56203 1346 

Improvement w.r.t. base -0.79% -1.54% -6.19% -0.45% 
Table 1 Minimum values found per objective, compared to the base situation 

 

In Fig. 4 in entire Pareto set is visualised in a parallel coordinate plot, where the 

optimal solutions per objective are highlighted in blue. The base solution is shown 

in black. Although in the end this depends on the preferences of the decision maker, 

it sounds reasonable to search for a solution that has improvement with respect to 
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the base solution for all objectives. The optimal solution for CE comes with 

improvements on all four objectives, but the improvements in TTT and OpD are 

limited. One solution that has a relative improvement of at least 0.40% for all four 

objectives (plotted in red in the figure). In total, 47 out of 210 Pareto optimal 

solutions have better values for all objectives than the base solution (i.e. dominate 

the base solution). 

 

  
Fig. 4 Parallel coordinate plot, including the optimal solutions per objective (blue), the base 

solution (black), one solution that gives considerable improvement with respect to the base 

solution in all four objectives (red) and all other Pareto optimal solutions (grey).  

 

3.3 Interdependencies between objectives 

 

3.3.1 Correlation between objectives 

In Table 2 a correlation matrix is shown for the 4 objective values of the solutions in 

the Pareto set (note that the matrix is symmetrical and the diagonal is filled with 

ones). OpD has a negative correlation with all other three objectives: it is opposed to 

all these objectives. The three remaining pairs of objectives have a positive 

correlation, so these objectives are more or less in line with each other. Especially 

USU is in line with CE, which can be explained because both objectives benefit 

from a reduction of car traffic. However, the correlation is not equal to 1, so still a 

trade-off exists between these objectives, as will be further elaborated on in the next 

section. The relation between CE and TTT is less clear: these objectives have a 

lower, but still positive correlation. 
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TTT USU OpD CE 

Total travel time (TTT) 1.00 0.79 -0.87 0.53 

Urban space used (USU) 0.79 1.00 -0.87 0.84 

Operating deficit (OpD) -0.87 -0.87 1.00 -0.62 

CO2 emissions (CE) 0.53 0.84 -0.62 1.00 
Table 2 Correlation between pairs of objectives 

 

3.3.2 Trade-off values between pairs of objectives 

A trade-off value indicates the extent to which a deterioration for an objective has to 

be accepted, if a decision maker likes to improve anther objective by moving to 

another solution (Wismans, 2012). For each pair of solutions in the Pareto set such a 

trade-off exists for at least one pair of objectives, because each Pareto solution is 

non-dominated. By introducing the average trade-off value, one value is provided 

for trade-off between a pair of objectives, along the entire (known) Pareto front (see 

Fig. 5). In Eq. 1 average trade-off is formally defined. 

 

  𝐴𝑇𝑂𝑤,𝑤′(𝑃) =

𝑍𝑤(argmin
𝑦∈𝑃

𝑍
𝑤′(𝑦))−min

𝑦∈𝑃
𝑍𝑤(𝑦)

𝑍𝑤(argmin
𝑦∈𝑃

𝑍𝑤(𝑦))−min
𝑦∈𝑃

𝑍𝑤′(𝑦)
  (1) 

 
Fig. 5 The average trade-off value, based on the extreme solutions for a pair of objectives 

 

The trade-off results for the case study are shown in Table 3. For example, on 

average it is possible to reduce TTT on a daily basis by one hour at a daily 

additional expense of €6.94 (which is slightly lower than the value of time in The 

Netherlands). It is likely that more efficient investments than the average are 

possible by selecting the right solutions. Note that the other two objectives (very 

likely) also change values and result in additional benefits or costs, which are 

disregarded in this table. 

 

w \ w' TTT (hours) USU (# of cars) OpD (euros) CE (kilos) 

TTT (hours) 

 

-2.44 -0.144 -0.232 

USU (# of cars) -0.411 

 

-0.067 -0.0661 

OpD (euros) -6.94 -14.9 

 

-1.12 

CE (kilos) -4.31 -15.1 -0.89 

 Table 3 Average trade-off values between the four objectives 

wZ

, ' ( )w wATO P

'w
Z



 
 

 

3.4 Relations between decision variables and objectives 

 

3.4.1 Correlation between decision variable types and objectives 

To identify relations between decision variables and objectives, the values of 

decision variables are aggregated based on their type (train station, express train 

station, P&R facility, train frequency or bus frequency). For each solution in the 

Pareto set the values of the decision variables within a type are summed up, 

resulting in a representation of a solution containing 5 values (1 value per type) to 

represent the decision variable values of a solution. For example, if a solution 

contains three additional train stations, the new decision variable for train stations 

equals 3. Note that this representation neglects the fact that some decision variables 

represent larger measures than other decision variables (for example the train 

between Zandvoort and Amsterdam Centraal has a shorter route than the train from 

Uitgeest to Amsterdam Bijlmer). 

A correlation matrix is made that has the four objectives in its rows and the 

aggregated values of types of decision variables in its columns (see Table 4), based 

on all solutions in the Pareto set. The train frequencies have the strongest correlation 

with the objectives, where TTT, USU and CE are reduced by increasing train 

frequencies and OpD is increased. Similar but less strong effects are found for bus 

frequencies, train stations and P&R facilities. Finally, express train stations show 

different relations: TTT and USU are increased by opening express train stations, 

and OpD is decreased. This is an indirect effect, which can be explained by the 

relation with (local) train frequencies: when frequencies of local trains are low (to 

save OpD), a cost-efficient way to still serve the local stations is to make them into 

an express train station.  

 

 

TTT USU OpD CE 

Train stations -0.50 -0.63 0.57 -0.41 

Express train stations 0.32 0.23 -0.30 -0.04 

P&R facilities -0.43 -0.36 0.47 -0.16 

Bus frequencies -0.71 -0.80 0.77 -0.57 

Train frequencies -0.85 -0.93 0.96 -0.78 
Table 4 Correlation between values per type of decision variable and objective values 

 

 

Train 

stations 

Express train 

stations 

P&R 

facilities 

Bus 

frequencies 

Train 

frequencies 

Train stations 1.00 -0.12 0.25 0.52 0.55 

Express train stations -0.12 1.00 -0.19 -0.21 -0.25 

P&R facilities 0.25 -0.19 1.00 0.30 0.42 

Bus frequencies 0.52 -0.21 0.30 1.00 0.73 

Train frequencies 0.55 -0.25 0.42 0.73 1.00 
Table 5 Correlation between values per type of decision variable and objective values 

 

In Table 5 this is illustrated by the correlation between pairs of values per type 

of decision variable: the values for express train stations have a negative correlation 



 
 

 

with all other types. The other types all have a positive correlation with each other. 

Especially bus frequencies and train frequencies are positively related, indicating 

that the bus and train routes defined as decision variables are rather complementary 

than competitive. 

 

3.4.2 Percentage of active decision variables in Pareto set 

In Fig. 6 the fraction of nonzero values for decision variables in the Pareto set is 

shown. Since the Pareto set contains only non-dominated solutions (and therefore all 

inferior solutions are filtered out), these fractions are an indicator for the 

effectiveness of each decision variable. In the extreme case that a variable is 

nonzero in all Pareto solutions, the related measure should always be implemented, 

regardless which (combination) of the 4 objectives the decision maker finds most 

important (so called ‘no regret’ measures). In the other extreme case where a 

variable is zero in all Pareto solutions, it is sure that this measure should never be 

implemented (so called ‘always regret’ measures).  

Variable 5 (train station at Nieuw Sloten) does not occur at all in the Pareto set 

and can therefore be classified as an ‘always regret’ decision. Some more variables 

(8 and 9: express train stations at Duivendrecht and Heemstede-Aardenhout and 10, 

13, 14 and 15: P&R facilities at Halfweg-Zwanenburg train station, at Amsterdam 

Geuzenveld train station, at Buikslotermeerplein in Amsterdam North and at 

Oranjebaan in Amstelveen) occur in only a very small fraction of the Pareto 

solutions (less than 10%). This means that for most combinations of preferences for 

objectives these measures should not be included in the final network design. 

However, specific combinations of preferences for objectives exist that make 

solutions containing these measures optimal, because the measures occur in the 

Pareto set. 

On the other hand, no measures are present in all Pareto solutions, so ‘no regret’ 

measures do not exist within the 37 measures investigated. Two measures (variables 

19 and 23, representing bus lines between IJmuiden and Amsterdam Sloterdijk and 

between Schiphol and Amsterdam Sloterdijk) have scores higher than 90%, so for 

most combinations of preferences for objectives these measures should be included 

in the final network design (but not for all combinations of preferences).  

When a distinction is made between types of objectives, P&R facilities in 

general have low values. The facility associated with variable 11 (Velsen-South) is 

an exception: it is located directly at a motorway junction and provides a good PT 

connection to the city centre of Amsterdam. The other P&R facilities with low 

values are located relatively close to the city centre of Amsterdam: reaching these 

locations by car involves too much congestion to be an attractive alternative. The 

new train stations Haarlem South (variable 2) and Amsterdam Westerpark (variable 

6) have relatively good scores within the category of train stations. Both stations are 

located near the city centres of their respective cities. Nonzero frequencies of bus 

and train lines are in general quite effective to include in Pareto solutions, but there 

are large differences among individual variables.  



 
 

 

A large majority of the variables has a value roughly around 50% and therefore 

it depends on the objectives that are preferred whether the corresponding measure 

should be taken or not (and therefore which solution is chosen as a final solution). 

Therefore, the next step is to make a distinction between solutions based on their 

objective values. 

 

 
Fig. 6 Effectiveness of decision variables to reach Pareto-optimality: fraction of solutions in 

the Pareto set that have a nonzero value for each decision variable 

 

3.5 Step-by-step pruning 

 

In this section two different step-by-step reduction procedures are presented to come 

to a final decision for implementation based on the Pareto set. The first procedure 

puts additional constraints to objective function values. The second procedure fixes 

certain decision variable values, i.e. choosing a measure to implement (for example 

because it is politically desirable for reasons that are not included in the considered 

objectives). These two approaches are the result of the three interviews with policy 

officers who prepare decision making at three different local governments in the 

Netherlands (municipality of Amsterdam, city region of Amsterdam and province of 

Overijssel). Note that these two approaches may also be combined to make a 

selection, but for the sake of simplicity this is not done here. 

 

3.5.1 Using values of objective values 

Starting from all solutions in the upper left corner of Fig. 7, one method (that was 

suggested by policy officers during the interviews) to gradually reduce the number 

of solutions in the Pareto set is to put additional constraints to objectives after 

optimisation. In this example, first an additional constraint to (normalised) OpD is 

set in a way that only solutions with a value lower than 0.4 are included. As a result 

137 solutions of the original 210 solutions remain. One more constraint is put to CE: 

in addition to the constraint to operating deficit, only solutions with a (normalised) 

value of lower than 0.2 are included. Only 20 solutions now remain in the selection. 

As can be seen in the lower left corner of the figure, this selection excludes all 



 
 

 

solutions with very low values for the other two objectives: putting a bound on the 

values for CE and OpD implies a bound for the other two objectives as well. A 

closer look at the objective OpD reveals that by the constraint for CE, the best 

solutions for OpD are now also excluded. Finally, if the decision maker is satisfied 

by the values for CE and OpD that are set now and still more than one solution 

remains, a logical final step is to find the best compromise solution from the 

remaining solutions considering the other 2 objectives (lower right corner of Fig. 7).  

 

 

 
Fig. 7 Step-by-step reduction from all Pareto solutions to one solution to be implemented by 

setting bounds to objective values 

 

3.5.2 Using values of decision variables 

Another method that was suggested by policy officers during the interviews to 

gradually reduce the number of solutions is selecting certain values for decision 

variables from the Pareto set. This can be relevant in the political context of 

decision making, where each political party may have had certain measures in its 

election-programme and therefore explicitly values certain measures above others. 

An interactive design process arises, where these political preferences not included 

in the objective functions come into play in the search for a final network design to 

implement. This design of network solutions after optimisation has two advantages 
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over a pre-definition of these solutions. Firstly, during the selecting process (i.e. in a 

workshop), the values for objective values are immediately known for each Pareto 

solution, since the solutions have already been evaluated using the lower-level 

model. Consequently, if a certain decision implies very bad scores for an objective 

that is considered to be important, the decision maker can reconsider it immediately. 

Secondly, a suboptimal solution (given the four predefined objectives) is never 

chosen, since all solutions are in the Pareto set (i.e. non-dominated) and therefore all 

possible as final optimal solution. 

An example of this kind of reduction is shown in Fig. 8. First, only solutions that 

have a frequency of 6 buses per hour on the bus line between Amsterdam Sloterdijk 

and Schiphol (called ‘Westtangent’ in Dutch) are included. This results in 26 

solutions that remain from the 210 Pareto solutions, but for all four objectives, both 

solutions with low values and with high values are still included. A further reduction 

to 7 solutions is achieved by selecting the solutions that also include a P&R facility 

along this new bus line, at Schiphol-North. As a result only solutions with high 

values for OpD and low values for the other three objectives remain (see the upper 

right plot in Fig. 8).  

 
Fig. 8 Step-by-step reduction to one solution to be implemented by selecting 

values for decision variables 
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The next step is to select the solutions that include the train station in the village 

of Halfweg (between Amsterdam and Haarlem), which results in 3 remaining 

solutions with similar scores for the objectives. Finally, if also the train station of 

Amsterdam Geuzenveld is included (also between Amsterdam and Haarlem), only 

one solution remains. The result of choosing these measures for implementation is a 

low value for TTT, USU and CE, but a very high value for OpD. This example 

shows that pre-setting only 4 decision variables can already result in selecting only 

one Pareto solution, with consequences for objective values (in this example a very 

bad score for OpD). Furthermore, all other 33 decision variables are indirectly fixed 

to a value in this way. Note that the considered set is a result of a heuristic, so it is 

an approximation of the Pareto set that probably contains much fewer solutions than 

the number of true Pareto solutions. If the true Pareto set would have been known, 

probably many more decision variables would need to be fixed until only one Pareto 

solution remains. 

 

3.6 Choosing one solution as a compromise  

 

In the end, one solution has to be chosen from the Pareto set for implementation. It 

is learnt from the interviews that in the political context of decision making each 

political party values objectives differently. As a result, each party represents a 

certain objective. When in negotiation, no party will accept a solution in which its 

objective has a very bad score. A direct method following this line of thought when 

searching for the best compromise solution is to select the min-max solution as the 

preferred solution (see Eq. 2, where 𝑍𝑤 represents the normalised value for 

objective 𝑤 and 𝑊𝑐 is the compromise subset of objectives, that may also contain all 

objectives). In this method, for each solution the least scoring objective is leading 

when selecting the best compromise solution from all Pareto solutions. Note that the 

normalisation procedure influences the results: choosing a suitable normalisation 

procedure is relevant, but not considered here. Since the objective values are 

rescaled from 0 to 1 using the minimum and maximum values in the Pareto set, the 

absolute difference in objective values is not explicit here anymore (as it was when 

calculating trade-off values in Section 2.2) 

 

   𝐵𝐶𝑆𝑊𝐶
(𝑃) = argmin

𝑦∈𝑃
( max

𝑤∈𝑊𝐶

𝑍𝑤(𝑦))  (2) 

 

In Fig. 9 the min-max solution is plotted for two different subsets of objectives. 

First, the min-max solution over all four objectives is chosen (the left plot in the 

figure). This shows that a compromise solution exists with reasonable scores for all 

four objectives simultaneously: for all objectives this solution has a score in the best 

30% of the range covered, i.e. the lower end of the range. Second, the min-max 

solution for OpD and CE is chosen (the right plot in the figure). This shows that, 

although OpD and CE are mainly opposed, low values for both objectives are 



 
 

 

possible simultaneously. However, this comes with a price: especially TTT scores 

much worse when focussing only on OpD and CE. 

 
Fig. 9 Min-max solution for all four objectives (left) and for OpD and CE (right) 

 

 

4 Conclusions 
 

In this paper several methods were applied to make the Pareto set resulting from a 

case study more useful as decision support information. First, conclusions are drawn 

concerning methodology development. Second, conclusions are drawn on the 

underlying design problem, the design of a multimodal passenger transportation 

network. The latter conclusions are mainly case-specific for the situation in the 

Northern part of the Randstad area in the Netherlands, but may be generalised to 

some extent to multimodal passenger transportation networks in general. 

 

4.1 Methodology development 

 

Interviews with policy officers showed that a Pareto set is valued positively as 

decision support information, because it enables an interactive process, where the 

consequences of certain choices can be demonstrated directly. Several visualisation 

methods and analytical methods turned out to make the Pareto set easier to 

understand and more useful to guide the decision maker to come to a final solution 

for implementation.  

The first method determines trade-off values between objectives, where scatter 

plots help to visualise trade-offs between 2 objectives (or a decision map to 

visualise 3 objectives). These trade-offs are seen as marginal costs, and therefore a 

decision maker can easily judge whether additional investments are worthwhile.  

The second method sets bounds to one or more objective values or selects a 

decision variable that is politically desirable, resulting in a step-by-step pruning 

process, to finally select one solution for implementation. In this process, the 

parallel coordinate plot helps to get an impression of the data and to visualise the 

position of one or more solutions in the entire set. 
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The third method identifies the min-max solution and is useful in the search for a 

compromise solution. This showed to be useful in the political context of decision 

making, where each political party values each objective differently. When in 

negotiation during the political debate, no party will accept a solution in which its 

objective will not be reached at all. 

All developed methods in principle are ready to be applied to any practical 

choice situation. The methods presented in this paper make the Pareto set more 

useful as decision support information: they demonstrate the next step in multi-

objective option prioritisation. However, to be more useful in practice, it is 

recommended to develop an interactive decision support tool in a software 

environment, which contains the developed methods to visualise and analyse the 

Pareto set. This tool would make it possible to interactively change the settings of 

the methods, providing a direct feedback loop between the modeller and the 

decision maker, for example in a workshop setting. 

 

4.2 Multimodal passenger network design: case study in the Randstad 

 

The objectives total travel time (TTT), urban space used (USU) and CO2 emissions 

(CE) are all mainly in line with each other and opposed to operating deficit (OpD). 

The trade-off value between TTT and OpD is smaller than the value of time used in 

cost-benefit analyses on more than half of the Pareto front, so from the viewpoint of 

the regional government cost-efficient measures exist within the selection of 

measures considered. 

The measures (all related to multimodal trip making) that were selected in the 

case study can only contribute to small relative improvements with respect to the 

base network for the sustainability objectives that were defined (CE can be 

improved by 0.45%, TTT can be improved by 0.79% and USU by 1.5%). However, 

in absolute terms these possible gains are considerable: every AM peak almost 4000 

hours of travel time, more than 2000 parked cars and 12 tons of CE (equivalent to 

the daily direct CE of more than 500 Dutch households) are saved. Furthermore, it is 

possible to reduce all four objectives simultaneously with at least 0.4% for each 

objective. In other words, a reduction of at least 0.4% is possible for TTT, CE and 

USU, with 0.4% less costs. 

The min-max solution has a reasonable score of around 0.3 for the normalised 

value for all four objectives, so it is possible to satisfy all four objectives to a large 

extent simultaneously. When only solutions with low CE are selected, it is still 

possible to cover largely diverse scores for OpD and TTT. Furthermore, when 

searching for trade-off solutions between these three objectives, small losses in OpD 

and TTT result in a relatively large gain in CE. 

When looking at individual measures, in the case study in the Randstad two 

‘always regret’ solutions could be identified and no ‘no regret’ solutions. The 

decision variables in the case study that represent train routes and bus routes are 

complementary, rather than competitive. Increasing frequencies appears to be more 

effective to improve sustainability than introducing P&R facilities and train stations. 



 
 

 

In general a vast number of stakeholders are involved in operating PT. The 

modelling framework in this research is applied using the interests of a single 

stakeholder. For future research it is recommended to optimise the PT network as 

one integrated network, taking into account the effects for all relevant governments 

and other parties in the region. This relates to the used costs function, which only 

included the costs relevant for the regional government, neglecting costs to be paid 

by the national government. 
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