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Comparing two dual relaxations of large scale train
timetabling problems

Frank Fischer · Thomas Schlechte

Abstract Railway transportation and in particular train timetabling is one of
the basic and source application areas of combinatorial optimization and integer
programming. We will discuss two well established modeling techniques for the
train timetabling problem. In this paper we focus on one major ingredient -
the bounding by dual relaxations. We compare two classical dual relaxations of
large scale time expanded train timetabling problems - the Lagrangean Dual
and Lagrangean Decomposition. We discuss the convergence behavior and show
limitations of the Lagrangean Decomposition approach for a configuration based
model. We introduce a third dualization approach to overcome those limitations.
Finally, we present promising preliminary computational experiments that show
that our new approach indeed has superior convergence properties.

Keywords Train Timetabling · Lagrangean Relaxation · Duality · Bundle
Methods

1 Introduction

The train timetabling problem (TTP) asks for schedules for a set of trains with
fixed routes in an infrastructure network so that certain operational restrictions
like station capacities and headway times are satisfied.

One major approach for large scale instances is based on time expanded
networks for modeling train schedules. These models give rise to huge integer
programming formulations and cannot be solved directly by standard solvers.
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Recently, several mathematical techniques, e. g., dynamic graph generation (Fis-
cher and Helmberg, 2012), bundle methods (Fischer and Helmberg, 2014), rapid
branching (Borndörfer et al, 2013; Weider, 2007), were developed to overcome
this situation.

In this paper we focus on one major ingredient - the bounding by dual
relaxations. Approaches based on duality allow to exploit structural properties
of the optimization problem so that the dual problem decomposes into several
simpler subproblems. Such approaches are frequently used in large scale opti-
mization, in particular duty and crew scheduling are success stories in which
similar approaches utilizing the bundle method entered in a productive planning
software, see Borndörfer et al (2005); Borndörfer et al (2008); Borndörfer et al
(2013).

We discuss two well-established modeling techniques for the TTP, first a
classical formulation based on packing constraints to allow for conflict-free
routings of the trains and second a configuration based formulation which
controls a conflict-free sequencing of trains on each track of the network via an
extended formulation. We compare the dual relaxation approaches for both
models and discuss their convergence behavior when solved by a bundle method
(Bonnans et al, 2003). In particular, we show limitations of the Lagrangean
Decomposition approach for a configuration based model.

Furthermore, we introduce a third relaxation approach, which is a combi-
nation of the two classical approaches, and show that it combines the good
bounds of the configuration network and the better convergence of the packing
model.

2 The Train Timetabling Problem

We briefly recall a formal description of the TTP next. The infrastructure
network is a directed graph GI = (V I , AI), where the nodes V I represent
stations, junctions, and crossings and the arcs AI represent connecting railway
tracks. Furthermore, we are given a set of trains R and each train r ∈ R is
associated with a path Gr = (V r, Ar) ⊆ GI in the infrastructure network.
Between two trains r, r′ ∈ R using the same track a ∈ Ar ∩ Ar′ there is a
minimal headway time ha(r, r′) ∈ N (in minutes), which is the minimal time
between the two trains entering this track. Furthermore, there are capacity
constraints on the nodes that state that at most a certain number of trains
cu ∈ N may be at the same station u ∈ V I at the same time instance t ∈ T .

One of the most successful models in the literature for solving the TTP is
based on time expanded networks, see, e. g., Caprara et al (2002); Borndörfer
and Schlechte (2007). Given a set of discrete time steps T = {1, . . . , |T |}
(usually minutes), we have for each train r ∈ R a time expanded network
Gr

T = (V r
T , A

r
T ) where V r

T = V r × T and

Ar
T ={((u, tu), (v, tv)) : (u, v) ∈ Ar, tv − tu = t̄r(u,v)}
∪ {((u, tu), (u, tu + 1)) : u ∈ V r

wait},



with V r
wait ⊆ V r the nodes at which r might wait and t̄r(u,v) the running time

of r over track (u, v) ∈ Ar. A feasible schedule of train r then corresponds
to a path P ⊆ Gr

T from the first to the last station. We denote the set of all
feasible paths in Gr

T by Pr. We associate a binary variable xra ∈ {0, 1} with
each a ∈ Ar

T in each time expanded network, where xra = 1 if and only if a is
contained in the timetable of train r.

The headway restrictions impose that certain arcs must not be contained in
the final timetable simultaneously if they correspond to some train runs violating
a headway constraint. In particular, let (r, a) ∈ Ar

T and (r′, a′) ∈ Ar′

T be two arcs
with a = ((u, tu), (v, tv)) and a′ = ((u, t′u), (v, t′v)) with t′u − tu < h(u,v)(r, r

′),
then those arcs must not be used both. Therefore, we add the following headway
constraints for each pair of incompatible arcs

xra + xr
′

a′ ≤ 1, {(r, a), (r′, a′)} ∈ H, (1)

where H is the set of pairs of incompatible train arcs. Let

H :=
{
x = (xr)r∈R ∈ {0, 1}

∑
r∈R |A

r
T | : x satisfies (1)

}
denote the set of integer vectors satisfying the headway constraints.

The capacity constraints in the nodes mean that at each time instance
t ∈ T at most cu ∈ N trains may be in u ∈ V I at the same time. Hence, the
sum over all arcs representing a train being in u at time t

K(u, t) := {(r, a) : a = ((u′, t′), (u, t)) ∈ Ar
T , r ∈ R}

must be at most cu∑
(r,a)∈K(u,t)

xra ≤ cu, u ∈ V I , t ∈ T. (2)

Putting all together, the TTP can be formulated as integer program as follows.
Given arc weights wr ∈ R|Ar

T |, r ∈ R,

maximize
∑
r∈R
〈wr, xr〉

subject to xr ∈ Pr, r ∈ R,
(1), (2),

(IP’)

i. e., we select for each train r a feasible schedule xr ∈ Pr (with a slight abuse
of notation xr denotes the incidence vector of a path P r ∈ Pr), so that all
paths satisfy the headway and capacity constraints.

In the rest of the paper we focus on the formulation of the headway
restrictions. Therefore, for the sake of simplicity of presentation, we drop the
capacity conditions (2) (but note Remark (1) below) and focus on the model

maximize
∑
r∈R
〈wr, xr〉

subject to xr ∈ Pr, r ∈ R,
(1).

(IP)



3 Dual Bounds

Because solving (IP) using standard solvers is impossible for instances of
practical size, many solution approaches are based on relaxation methods to
obtain bounds on the optimal solution. One of them is Lagrangean relaxation of
the coupling constraints. Different approaches to apply Lagrangean relaxation
have been proposed in the literature. We will discuss two of them next.

First, we write (IP) as

maximize
∑
r∈R
〈wr, xr〉

subject to xr ∈ Pr, r ∈ R,
x ∈ H,

with H consisting of all integer vectors that satisfy the headway constraints.
Its convex hull convH is a polytope. There are two general approaches for
describing H. The first uses inequalities, i. e.,

H =

{
xr :

∑
r∈R

Mrxr ≤ b

}
. (3)

The second approach assumes that one is able to optimize over H, i. e., one is
able to solve

min {〈p, x̃〉 : x̃ ∈ H} . (4)

We will briefly discuss both approaches in the context of the TTP.

3.1 Relaxation of Clique Constraints

The first approach uses the outer description of H, i. e., one solves

maximize
∑
r∈R
〈wr, xr〉

subject to xr ∈ Pr, r ∈ R,∑
r∈R

Mrxr ≤ b.

Because this problem is typically hard to solve one employs Lagrangean relax-
ation of the coupling constraints:

min
y≥0

max

{∑
r∈R
〈wr, xr〉+ yT (b−

∑
r∈R

Mrxr) : xr ∈ Pr

}
. (LR-Clq)



The function

ϕclq(y) := max

{
yT b+

∑
r∈R
〈wr −MrT y, xr〉 : xr ∈ Pr, r ∈ R

}

is a non-smooth convex function and can be optimized using, e. g., bundle
methods, see Hiriart-Urruty and Lemaréchal (1993). Note that the evaluation
of the function ϕclq at some point y requires the solution of the subproblems
max

{
〈wr −MrT y, xr〉 : xr ∈ Pr

}
for each r ∈ R, which are shortest path

problems in the time expanded networks.
The coupling constraints (1) alone are very weak in general so that the

relaxation leads to weak bounds. Better bounds can be achieved by replacing (1)
with clique constraints∑

(r,a)∈C

xra ≤ 1, C ∈ C, (1’)

where C is a family of cliques of pairwise conflicting train arcs, i. e., for each
C ∈ C we have

∀ (r, a), (r′, a′) ∈ C, (r, a) 6= (r′, a) : {(r, a), (r′, a′)} ∈ H.

However, in general the family C is very large. Therefore the coupling constraints
must be separated (which is possible when applying bundle methods, see, e. g.,
Helmberg (2004); Belloni and Sagastizábal (2009)) and typically only a small
subset of C is considered at all (often only some cliques of two trains). This
leads to stronger relaxations at the cost of more difficult algorithmic steps.

Remark 1 Note that capacity constraints (2) have a similar form as the clique
constraints (1’). In practice one deals with them in very much the same way
employing Lagrangean relaxation together with separation. This can be done
for model (LR-Clq) as well as for all following models.

3.2 Extended Formulation

Another approach proposed in Borndörfer and Schlechte (2007) is based on an
extended formulation. It introduces additional configuration networks in order
to model (4). This leads to the formulation:

maximize
∑
r∈R
〈wr, xr〉+ ıH(x̃)

subject to xr ∈ Pr, r ∈ R,
x = x̃,

(IP-Cfg)



with ıH the indicator function of H

ıH(x̃) :=

{
0, x̃ ∈ H,

−∞, otherwise.

Then one employs Lagrangean relaxation of the coupling constraint x = x̃
leading to

min
p∈Rn

ϕcfg(p) :=

{∑
r∈R

max
xr∈Pr

〈wr − pr, xr〉+ max
x̃∈H

〈pr, x̃〉

}
(LR-Cfg)

This is also known as Fenchel duality approach in the literature, see, e. g.,
Boţ (2010). The idea is to define local feasible flows, which ensure headway
feasibility on each infrastructure arc a ∈ AI and couple them appropriately
with the train flows. Based on the already described time expanded networks
Gr

T , we will define configuration networks Ga as illustrated in Figure 1.
The construction is as follows: Let sa be an artificial source and ta an

artificial sink node to define a flow on track a = (u, v) ∈ AI . The set

Xa := {((u, tu), (v, tv)) : (u, v) = a}

denotes all running arcs on track a. Let La := {(u, tu) : ((u, tu), (v, tv)) ∈ Xa}
and Ra := {(v, tv) : ((u, tu), (v, tv)) ∈ Xa} be the associated sets of event nodes,
i. e., representing departure and arrival, respectively, at the start and end
station of track a. Note that all arcs in Xa go from La to Ra. We denote by
n(r, r′, τ) ∈ Z for (u, tu) ∈ Ra the next possible departure time of train r′ after
train r has arrived at time τ :

n(r, r′, τ) = τ − t̄r(u,v) + ha(r, r′).

Now let Aa := {((v, tv), (u, tu)) : (v, tv) ∈ Ra, (u, tu) ∈ La} be a set of “return”
arcs that go back in the opposite direction and represent the next potential
departure on that track; they connect the end of a running arc on a (or node
sa) with all possible follow-on arcs (or node ta) on a:

((v, tv), (u, tu)) ∈ Aa ⇔ tu ≥ n(r, r′, tv).

In Figure 1, the construction is shown on a small set Xa. On the left-hand
side, the set of running arcs of track a and the node sets La and Ra are
shown. In the middle, the configuration network is constructed with dashed
and dotted auxiliary arcs for the easy case of full block occupation, i. e.,
ha(r, r′) = t̄r(u,v) ⇒ n(r, r′, τ) = τ . Instead of constructing all possible return
arcs each arrival node in Ra is only connected once with the time-line, i. e.,
with the next potential departure node La (or ta). On the right-hand side of
Figure 1 the reduced graph based on a time-line concept can be seen.

It is easy to see that the configuration networks are bipartite and acyclic, if
all minimal headway times are strictly positive. Furthermore, Schlechte (2012)
showed that there is a bijection from all sa-ta-paths in Ga to the set of valid
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Fig. 1: Example for the construction of a track digraph.

configurations, i. e., selections of Xa, on track a if and only if the headway
times are transitive. Thus, it is possible to solve maxx̃∈H〈pr, x̃〉 by longest
sa-ta-path computations in Ga.

The idea of extended formulations is shown in Figure 2. On the left-hand
side, the rough structure of the clique formulation can be seen, i. e., with
appropriate binary matrices N and M . N is the classical network matrix,
see Schrijver (2003), representing all feasible paths Pr in Gr

T . Furthermore,
let A =

⋃
r∈RA

r and let δ ∈ {−1, 0, 1}|A| be the classical right-hand side to
ensure flows from the corresponding sinks to sources. The matrix M is simply
the collection of Mr. On the right-hand side the structure of the extended
model is shown. Matrix NC denotes the network matrix of the configuration
networks and C is the necessary coupling part with N . Note that matrices N
and NC are block diagonal matrices where each block corresponds to either a
time expanded train network or a configuration network.

4 Solving the Relaxations

In this section we briefly describe our main algorithmic approach to solve the
dual problems (LR-Clq) and (LR-Cfg). The standard approach is to employ
a non-smooth first-order subgradient based method to solve the non-smooth
convex optimization problems. In particular, bundle methods proved to be
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Fig. 2: Comparison of the matrix structure of the clique formulation and the
extended formulation.The left picture shows the structure of the constraint
matrix for clique constraints with (N, δ) being the flow constraints in the train
networks, (M, b) the clique constraints. The right picture shows the configura-
tion networks formulation with (NC , δC) the additional flow constraints for the
configuration networks and (C, 0) the coupling between train and configuration
networks.

very valuable tools. They are described in great detail in Bonnans et al (2003);
Hiriart-Urruty and Lemaréchal (1993); Lemaréchal et al (1995).

A bundle method solving a non-smooth convex optimization problem

min
y∈Rm

f(y),

which is given by a first order oracle computing for each y ∈ Rm the function
value f(y) and a subgradient g(y) ∈ ∂f(y), works as follows. Given a current
iterator ŷ the algorithm forms a cutting plane model

f̂(y) = max{`i + 〈gi, y〉 : i ∈ N}

of f around a ŷ. Then it determines a new candidate ȳ ∈ Rm by solving an
auxiliary problem (for some weight parameter u > 0)

ȳ = arg min
{
f̂(y) +

u

2
‖y − ŷ‖2

}
. (5)

The term u
2 ‖y − ŷ‖2 can be thought of as some kind of trust region term

preventing the new iterate to be too far away from ȳ. Afterwards the function
f is evaluated at ȳ and the function value f(y) is compared with the model
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Fig. 3: Example train graph for bad convergence of (LD2).

value f̂(ȳ). If the real progress is reasonably large compared with the progress
promised by the model, i. e., if

f(ŷ)− f(ȳ) ≥ % ·
(
f(ŷ)− f̂(ȳ)

)
,

for some descent parameter % ∈ (0, 1), the algorithm accepts the ȳ as the new
iterate (a so called “serious step”). Otherwise the model f̂ is a bad approximation
of f in ȳ, so the candidate is dropped and the algorithm stays at ŷ but improves
the model at ȳ using subgradient information g(ȳ) ∈ ∂f(ȳ) (the algorithm does
a “null step”).

5 Comparing both Approaches

Next we compare the approaches presented in Sections 3.1 and 3.2 from a
computational point of view. Theoretically both are equivalent in the sense
that the optimal solutions correspond to each other, see Schlechte (2012). We
need to separate inequalities (3) for (LR-Clq), and to solve problem (4) for
(LR-Cfg). Both tasks are computationally hard in practice, so they are usually
only done approximately (i. e., only some inequalities are separated and the
optimization problem is relaxed itself). In practical applications the second
approach turned out to provide stronger bounds (Borndörfer and Schlechte,
2007). However, when employing a first order method, e. g., a bundle method,
to solve the Lagrangean dual problem, both models behave quite differently
(also see Fischer (2013), Chapter 6).

Consider the following example with one track (u, v), two trains R = {A,B},
∀ r, r′ ∈ R : h(u,v)(r, r

′) = 10. Train A has a higher priority, so an optimal
solution runs Train A at t = 1 and Train B at t = 11, see Figure 3 for an
illustration.



(LD1) (LD2)

Fig. 4: Fractional solutions of train A (first row) and train B (second row) for
(LD1) (left pictures) and (LD2) (right pictures), see Fischer (2013).

Figure 4 shows the primal solutions and their development after a certain
number of iterations for (LR-Clq) and (LR-Cfg). We illustrate the fractional
solution values with gray-scale values, from white representing 0.0 to black for
1.0. The upper row shows the active flow variables from train A and the lower
one from train B, respectively. On the left-hand side, the algorithm increases
the augmented costs on all arcs for t = 1, . . . , 10 quickly for (LR-Clq). Thus,
after few iterations Train B is forced to start at t = 11.

In contrast, for (LR-Cfg) the algorithm increases the augmented costs for
Train B only for one arc in each iteration. After a few iterations t = 1 gets too
expensive for Train B, so it uses t = 2. Then the costs for t = 2 are increased
until B uses t = 3, but t = 2 is still used with some fractions as you can see
from the gray color and so on. Eventually train B is allocated at t = 11 and the
optimal primal solution is found, but obviously it needs several iterations until
the gray areas are removed from the primal solution. During solving (LR-Cfg),
the flow of train B smeared across the whole interval of potential departure
times. Note, a finer discretization does not affect the convergence of (LR-Clq),
but has an even worse effect on (LR-Cfg).

Figure 5 shows the objective value of a large instance after a certain number
of iterations of the bundle method. The convergence for (LR-Clq) is much faster
than for (LR-Cfg), although (LR-Cfg) might lead to better bounds eventually.

The reason is as follows. In each iteration the bundle method only gets
information about violated constraints. For (LR-Clq) a single constraint couples
train arcs of several time steps, whereas in (LR-Cfg) each constraint only
couples one train arc (with its corresponding arc in the configuration network).
Therefore much more iterations are required for (LR-Cfg) until the same
information is accumulated.
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Fig. 5: Objective function after a certain number of iterations for (LR-Clq)
(dashed line) and (LR-Cfg) (solid line), see Fischer (2013).

6 Combining both Approaches

In order to overcome the bad convergence properties of (LR-Cfg) we propose
a different dualization approach. We consider

min

{∑
r∈R
〈wr, xr〉+ ıH(x̃) : xr ∈ Pr,

∑
r∈R

Mrxr =
∑
r∈R

Mrx̃r

}
, (IP-Comb)

being equivalent to (IP). Note, an optimal solution satisfies x̃ ∈ H, hence∑
r∈RM

rx̃r ≤ b and consequently
∑

r∈RM
rxr ≤ b. Lagrangean relaxation

leads to

min
y
ϕcmb(y) :=

{∑
r∈R

max
xr∈Pr

〈wr −MrT y, xr〉+ min
x̃∈H
〈MrT y, x̃〉

}
.

(LR-Comb)

This formulation has the advantage that each coupling constraint couples sev-
eral train arcs at the same time, hence we can hope for good convergence of the
optimization algorithm. Furthermore, one can show that solving (LR-Comb) is
equivalent to solving (LR-Cfg) by a proximal bundle method with an appropri-
ately chosen scaling matrix (see (Bonnans et al, 2003)).

7 Combined Approach and Scaled Bundle Methods

One disadvantage of the combined approach is that during the run of the
algorithm far more constraints are separated for (LR-Comb) than for (LR-Clq)



or (LR-Cfg). The reason is as follows. In the case of (LR-Clq) a single clique
constraint (1’) for some C ∈ C is only separated if the left-hand side of the
constraint is larger than one. This can only happen if at least two trains
compete for the corresponding infrastructure arc at the same time. In contrast,
the respective constraint for (LR-Comb)∑

(r,a)∈C

xra =
∑

(r,a)∈C

x̃ra,

is violated, and therefore separated, as soon as some train uses one of the
coupled arcs, even if no headway restriction is actually violated. Indeed, the
number of separated constraints could be up to 100 times as large as for
(LR-Cfg).

In order to overcome these difficulties, we use the following approach.
Comparing the two dual functions ϕcfg and ϕcmb arising from (LR-Cfg) and
(LR-Comb), respectively, we see the relation

ϕcfg(MT y) = ϕcmb(y).

Indeed, given a current center p̂ = MT ŷ, then solving the bundle subproblem
(5) w. r. t. a model ϕ̂cmb of ϕcmb is equivalent to solving the following scaled
subproblem w. r. t. the model ϕ̂cfg(p)

min
p

{
ϕ̂cfg(p) +

u

2
‖p− p̂‖2(MTM)−1

}
, (6)

where ‖p‖2(MTM)−1 := pT (MTM)−1p denotes a scaled norm. Note that using
scaled norms leads to convergent bundle methods under reasonable assumptions,
see Bonnans et al (2003). Therefore, by only replacing the norm we get the
same steps when solving (LR-Cfg) as we would get by solving (LR-Comb).
Furthermore, storing the full matrix M to define the scaling term is not
necessary. It is sufficient to use (and thus to separate) only few rows of M , so
that solving (6) leads to steps that are good approximations of the steps defined
by (5) for (LR-Comb). In particular, if we separate only an easily separable
subset of all possible cliques C this only influences the scaling matrix, i. e. the
algorithm, but not the quality of the model. In contrast, separating only few
constraints in (LR-Clq) does influence the model quality, usually leading to
weaker bounds.

8 Computational Results

We tested the algorithm on the public available instances of the RAS Problem
Solving Competition 2012, see RAS (2012). The instance consists of roughly
100 nodes forming a corridor with mostly one-directional tracks and a few so
called sidings at which overtaking is possible. The sidings are modeled using
nodes with capacity two, all other nodes have capacity one. The time horizon
is 8 hours and the possible timetables of all trains are completely free in the



sense that trains might wait arbitrarily long given that no capacity constraints
are violated. In the instances an increasing number of trains from 12 up to 20
should be scheduled in the network (in this paper we focus only on the largest
instances).

For the time expanded models we use a discretization step size of one
minute. The large time horizon and the freedom of the schedule of the trains
(in particular, there is no upper bound on how long a train is allowed to wait)
cause the time expanded model to become very large. Therefore we employ
a Dynamic Graph Generation technique of Fischer and Helmberg (2012) for
dealing with the shortest path subproblems in the train graphs as well as in
the configuration networks (in the models that use them).

We used two different, simple objective functions. The first objective function
(Obj1) penalizes the delay at the final station, i. e., for an arc ((u, tu), (v, tv)) ∈
Ar

T with u 6= v and v being the final station of train r ∈ R, the weight is

wr
((u,tu),(v,tv))

= α · (tv − tr)
2
,

where tr denotes the earliest possible arrival time (without delay) at the final
station. The weight of all other arcs is zero. This is a typical goal for freight
trains, for which only the arrival time at the final destination is important.

The second objective function (Obj2) penalizes the delay at each interme-
diate station. An objective function of this kind is usually used for passenger
trains, for which delays not only at the last but also at intermediate stations
should be avoided. In both cases the delay is penalized quadratically. This
emulates a typical goal that a large delay of a single train should be avoided in
favor for small delays of several trains.

We solved the problem approximately for the three models (LR-Clq),
(LR-Cfg) and (LR-Comb), where (LR-Comb) is solved using the scaled bundle
method described in Section 7. All algorithms are implemented in the Nim
programming language and compiled with the Nim compiler 0.11.2 and GCC
4.8. The quadratic bundle subproblems are solved using Cplex 12.5.1 CPLEX
(2014), the dynamic graph generation shortest path problems in the train graphs
used the Dyng library Fischer (2014). The configuration network subproblems
are solved exactly using a dynamic programming approach. All tests were done
on an Intel Core i7 CPU at 3.5 GHz, 8 cores and 16 GB of memory.

The results are shown in Figures 6 and 7 for (Obj1) and (Obj2), respectively.
The left pictures show the development of the objective value (note that the
dual problem is a maximization problem) after a certain number of iterations.
The right pictures show the objective value after a certain running time.

The first observation is that model (LR-Clq) leads, as expected, to weaker
relaxations than the configuration based models (LR-Cfg) and (LR-Comb).
The advantage of the latter is not very large for (Obj1) but significant for
(Obj2). This justifies why one is interested in these kind of models in the first
place. Comparing the running times, one sees that (LR-Clq) converges faster
than the configuration based models. However, for (Obj2) the advantage of the
configuration based formulation is so large that (LR-Comb) quickly creates
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Fig. 6: Objective value after some iterations/time for all three relaxations with
objective (Obj1).
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Fig. 7: Objective value after some iterations/time for all three relaxations with
objective (Obj2).

better solutions. It is also apparent that the single iterations are much more
costly for the configuration based models. This is mostly due to the fact that
solving the configuration subproblems exactly takes a significant amount of
time.

Comparing the traditional configuration based model (LR-Cfg) and the new
combined model (LR-Comb), the latter performs much better. In particular
considering (Obj2), the scaled model converges fast enough to outperform the
clique based model after a short time, whereas (LR-Cfg) converges slower by
more than one order of magnitude. However, it can also been seen, especially
for (Obj1), that the advantage w. r. t. the number of iterations is larger than
w. r. t. the running time. A single iteration for the scaled model is even more
expensive for the new combined model. One reason is that the combined model
must deal with both, configuration networks and cliques. Another reason is
that the scaled quadratic subproblem (6) is more difficult to solve than the
traditional subproblem.



9 Conclusions and Future Work

In this paper we proposed a new dualization approach for the train timetabling
problem. Based on a time expanded formulation, the new approach combines
the classical conflict clique based formulation with an extended formulation
using configuration networks. The advantage of the new formulation is that it
provides the good bounds of the configuration network formulation but at the
same time has much better convergence properties.

While the computational tests are promising, they also show that a lot has
to be done to improve the performance of the new approach. The additional
steps required for the combined approach increase the computational effort and
lead to more expensive iterations. Hence, further developments are necessary.
One possibility would be to use the scaling only for configuration networks of
some important infrastructure arcs, possibly by identifying these arcs during
the solution process automatically.

Another important fact is that the new approach might allow to use the
configuration based models for large instances in reasonable time. This allows
the development of models that take advantage of the additional variables
introduced for the extended formulation.
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