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Abstract In nearly saturated station areas the limited capacity is one of the
main reasons of delay propagation. Spreading the trains well in these areas has
a big impact on the total travel time in practice of all passengers in the railway
network in case of frequently occurring small delays. We focus on improving
the performance in the bottleneck of the network in order to improve the
performance of the whole railway network. This document proposes a method
that builds from scratch a routing plan and a cyclic timetable that optimally
spread the trains in space and time. An integer route choice model assigns,
without considering a timetable, to every train a route such that the maximal
switch usage is minimized and that the number of times that each switch is
used is quadratically penalized. Thereafter, a mixed integer linear timetable
determination model assigns to each train the times at which this train passes
through the switches on the route that was assigned by the route choice model.
Different from other approaches is that we first fix the routing and thereafter
construct the timetable. Compared to a reference routing plan for Brussel’s
railway station area, the switch usage improved with 7,6%.

Keywords Passenger robustness · Railway routing · Railway timetabling ·
Recurring delays · MILP

1 Introduction

The focus of this research is on making a timetable and a routing plan from
scratch to transport passengers optimally in, out and through a busy rail-
way station network. We assume that this timetable and routing plan can be
made feasible outside this bottleneck without many changes since much less
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constraints are present there. Passengers want both short and reliable travel
times. Hence, our goal is to optimize the passenger robustness, which means
the total travel time of all passengers in practice in case of frequently occurring
small delays (Dewilde et al., 2011). Unfortunately, direct implementation of
this goal function is computationally highly demanding, as real travel times
of all passengers and propagation of delays then have to be calculated. That
is why we indirectly strive for passenger robustness by looking for an opti-
mal spreading of the trains in time and space. We restrict our research to
timetabling and routing, which are situated on the tactical level of railway
planning. Although, for example, also network design, on the structural level,
and real-time interventions, on the operational level, have an impact on the
travel times of railway passengers in practice and thus on the passenger ro-
bustness of the railway system. The timetable and routing plan construction
are only designed to mitigate the effect of frequently occurring small delays on
the passenger travel times. The impact of large disturbances is not considered
during the construction of the timetable or routing plan.

First, we describe how our method is related to the state of the art in timetabling
and routing for nearly saturated railway station areas. We also point out the
novelties and differences of our approach. Secondly, our methodology for rout-
ing and timetabling is explained in detail. The optimization models are de-
scribed and illustrated on a small case study. Thereafter, the performance of
the presented method is illustrated on the railway station area of Brussels
(Belgium).

2 Literature

The construction and optimization of a routing plan and a timetable are closely
interwoven. An optimal timetable can make routing infeasible and a routing
plan can have no feasible timetabling. Research on timetables and routing
plans can be divided into two classes. A first class of methods starts from an
existing timetable or routing plan and tries to improve these by introducing
small and smart modifications. The advantage is that these changes can have
a relatively large impact on the performance of the railway system, for ex-
ample on passenger robustness (Burggraeve et al., 2015; Dewilde et al., 2013,
2014). Moreover, these changes can easily be implemented without bothering
the passengers too much. A second class of methods generates a routing plan
and timetable from scratch. This class has the advantage that one doesn’t
need an existing timetable and/or routing plan to start from. Furthermore,
one can thoroughly work out an optimal solution without being constrained
to small changes and without any bias towards solutions that are similar to
the initial timetable and routing plan. In this second class, there are again dif-
ferent branches in ongoing research. In a first branch, timetables are designed
on a macroscopic level of the infrastructure and afterwards, on the microscopic
level, the best routing throughout the stations is determined (Zwaneveld et



al., 1996, 2001). If the routing problem is infeasible on the microscopic level,
then the timetable has to be adapted. This approach works top-down. In a
second branch, timetables are designed in a bottom-up approach. The first
step is to aggregate the microscopic infrastructure (to a macroscopic level).
This is done in such a way that it is possible to calculate timetable and time
slot allocations with linear and integer programming in a reasonable amount of
time and such that transforming the timetable and time slot allocations back
to the microscopic level does not create conflicts (Borndörfer et al., 2011).

Our research belongs to the second class of methods. We focus on schedul-
ing railway traffic in the bottleneck of a network in order to improve the
performance of the whole railway system (Goldratt, 1986). Such a bottleneck
often contains many switches, for example a railway station area. That is why
we, in contrast to the bottom-up and the top-down approach, directly look at
the microscopic infrastructure level for the construction of an optimal routing
plan and timetable. Because we work on the microscopic, and thus detailed
infrastructure level, computation time increases quickly with the size of the
network and the number of trains on the network. The advantage of this ap-
proach is that the routing plan and the timetable are optimally designed for
the bottleneck.

Routing problem Research on routing trains through railway station areas
(almost) always starts from a timetable, meaning that arrival and departure
times in the network and in the stations are known. The routing problem then
consists of finding the assignment of routes to the trains that optimizes a given
objective function while adhering the timetable. Examples of optimization
criteria are maximizing buffer times between trains, minimizing travel times
of trains or passengers, minimizing switch usage, maximizing spreading, etc. In
our approach, we solve the routing problem before and thus independent of the
timetabling problem in order to optimize the switch usage in the bottleneck.
Our routing problem can be described as follows. A set of trains has to be
routed through a railway station area, which is characterized by many parallel
tracks and switches. For each of these trains their origin and destination in the
considered network are known. There is no timetable to start from. Different
optimization criteria can be used, for example homogenizing train traffic on
tracks, optimizing the spreading of the trains in space without making detours,
etc. Our focus is on the usage of switches in our network. Remark that the
number of times that a switch is used determines the maximal buffer time
in that switch and thus its vulnerability for propagating delays. For example,
when 10 trains pass a switch in one hour, the optimal spreading of these trains
in this switch leads to a train passage every 6 minutes. When only 5 trains
pass that switch in an hour, the best possible spreading is only one train in
every 12 minutes. That’s why we minimize the maximum usage of a switch
and simultaneously, we penalize the number of times that each switch is used
quadratically.



Timetabling problem The timetabling problem consists of the assignment of
time instants to the trains that have to be planned, for example arrival and
departure times at stations or reservation and release times of sections of
the network. Most models that solve the (cyclic) timetabling problem from
scratch are based on the periodic event scheduling problem (PESP) (Serafini
and Ukovich, 1989; Cacchiani et al., 2012; Liebchen et al., 2007). In the PESP,
arrival and departures times of trains in stations are events. Related events
are linked to each other by constraints that put an upper bound and/or lower
bound on the time duration between these events. Related events are for ex-
ample arrival and departure times of the same train, arrival and departure
times of trains that provide a transfer, arrival and departure times of trains
that make use of the same platform, etc. In our approach not only arrival and
departure times in stations are taken into account, but also the passage times
of the trains in all switches on their route. We are able to do this, because
we already assigned a route to each train by solving the route choice model.
The passage times of a train in the switches on its route are related to each
other by constraints in the optimization model. The times between different
trains on a common switch are not constrained explicitly, but these times are
maximized in the objective function of the optimization model.

3 Methodology

We construct a cyclic timetable and routing plan from scratch. We start from a
network and a set of trains that has to be routed through this network. For each
train, the origin and destination in the network are fixed. The first step is to
determine the set of all routes that link the origin of a train with its destination
and to build the binary matrix L which contains the information whether or
not a switch is part of a certain route. In this section, we first explain the route
choice model and secondly the timetable determination model. For each model,
the decision variables and parameters, the goal function and the constraints
are presented.

3.1 Route choice model

We want to assign routes to the trains such that every switch and platform is
used as little as possible with the underlying goal to spread the trains optimally
in space. We focus on switches and platforms because they uniquely determine
the route of a train through the network. Moreover, two trains can only be in
conflict if they share at least one switch. To simplify the formulation, we will
only mention switches in the rest of the paper, while in fact meaning switches
and platforms. We make no assumptions about the timetable. The timetable
will only be determined after the routing plan. In order to achieve that every
switch is used as little as possible, we combine two aspects. First, we explicitly
minimize the maximum use of a switch. We say that a switch is used x times



if there are x trains whose route contains this switch. Thereafter, we minimize
the sum of the squares of the usages of all switches and we put the maximum
usage, found in the first problem, as a constraint on the usage of each switch.
This second optimization problem gives the incentive to further decrease the
individual switch usages. We integrate these two minimization problems into
one problem by giving the minimization of the maximum number of usages
of a switch a much higher weight (HW) and leaving out the constraint on
the maximum usage of each switch. The magnitude of HW depends on the
problem size. We minimize the sum of the squares of the usages, instead of for
example the sum of the usages, to penalize an increase in a switch utilization
rate harder the higher the utilization rate of the switch already is. In fact, we
minimize the usage of every switch in order to allow for an optimal spreading
in time during the timetable determination phase. We now present and explain
the optimization model.

Parameters
T = {t1, t2, · · · , tn} = set of trains with n the number of trains.
W = {w1, w2, · · · , wk} = set of switches with k the number of switches.
R = {r1, r2, · · · , rp} = set of routes with p the number of routes.
Rt = set of routes that train t can take (based on its origin and destination in
the network).
L = (lr,w)r∈R,w∈W with lr,w = 1 if route r ∈ R contains switch w ∈ W and 0
otherwise.
HW = the high weight used to enforce the domination of the minimax criterion
in the objective function.

Decision variables
gw ∈ N = number of times switch w is used, w ∈W .
xt,r = 1 if route r ∈ Rt is assigned to train t ∈ T and 0 otherwise.

Model
The minimization of the maximum usage of a switch can be represented by:

min max
w∈W

gw. (1)

The minimization of the sum of the squared usage of each switch can be
represented by

min
∑
w∈W

g2w. (2)

The combined weighted goal function can be represented by

min HW · max
w∈W

gw +
∑
w∈W

g2w. (3)

Remark that both terms of this objective function are non-linear. We now ex-
plain how we linearize this objective function. For the first term, we introduce



a new decision variable z that is bounded below by the gw’s in constraints (6).
These constraints assure that z is always larger than the maximum of the gw’s.
By minimizing HW ·z, see (5), the maximum of the gw’s is minimized and the
high weight assures that z and thus the maximum use is as low as possible.
To linearize the second term, we use the following trick. We introduce K · |W |
binary decision variables bk,w, with k ∈ {1, · · · ,K}, w ∈ W and with K an
upper bound on the maximum usage of a switch. If switch w is used at least
k times (gw ≥ k), then bk,w = 1, else bk,w = 0. The values of the ck,w’s in
Table 1 now assure the following equality for every switch w:

K∑
k=1

ck,wbk,w =

gw∑
k=1

ck,wbk,w = g2w, (4)

where the first equality is true by definition of the bk,w’s. The (first) summa-
tion is a linear combination of decision variables and thus suitable to replace∑

w∈W g2w in the goal function. We also add constraints (7). These constraints
enforce that bk,w = 1, if gw ≥ k. If gw < k, then bk,w will be zero, because of
its contribution in the goal function of the minimization problem. We use K
as coefficient for bk,w, as we defined it as upper bound on the maximal usage
of a switch and thus on gw. Remark that the number of trains is a natural
upper bound on the maximal usage of a switch as a train can pass a switch at
most once. Thus, K ≤ |T |.

Table 1 Linearization of the quadratic terms

k ck,w
∑k

l=1 ck,w

1 1 1
2 3 4
3 5 9
4 7 16
...

...
...

K 2K − 1 K2

min HW · z +
∑K

k=1 ck,wbk,w (5)

s.t. gw ≤ z ∀w ∈W (6)

gw −K · bk,w ≤ k − 1 ∀k ∈ {1, · · · ,K},∀w ∈W (7)∑
r∈Rt

xt,r = 1 ∀t ∈ T (8)∑
t∈T

∑
r∈Rt

lr,wxt,r = gw ∀w ∈W (9)

gw ∈ N ∀w ∈W (10)

z ∈ N (11)

xt,r ∈ {0, 1} ∀t ∈ T, ∀r ∈ Rt (12)



Constraints (8) assure that each train is assigned exactly one route (that con-
tains the origin and destination of that train in the network). Constraints (9)
make sure that the number of assigned routes that use switch w equals gw.
Constraints (10) and (12) assure that the number of times that a switch is
used is an integer and that the assignment of a route to a train is represented
by the binary variable xt,r. As the gw’s are integers, z is also an integer, which
is represented in constraint (11).

Remark If a train has more possible origin and/or destination points in the
network, this can easily be integrated in the model by adding the new possible
routes for this train to his set Rt.

3.2 Timetable determination model

Objective
The goal of the timetable determination model is to spread the trains optimally
in time in each switch. We start from the output of the route choice model, so
every train has already been assigned exactly one route. Furthermore, as the
distances between two points in the network and the speed limits for trains
and links are known, we can easily find the time that a train needs between
any pair of switches on its route in ideal circumstances (no disturbances). The
approach also works if there are supplements included in the train travel times
or even waiting times, as long as the travel times are fixed and known before-
hand. So, if we fix the start time of each train in the network, this uniquely
determines the position of the trains at every moment in time. The start times
(and thus all passage times at switches) will be optimized by a mixed integer
linear program that maximizes the time between every two passages in every
switch.

To optimally spread the trains, we again focus on two aspects. The approach
is similar to that of the route choice model. Primary, we maximize the minimal
buffer time in a switch, i.e. the time between two consecutive passages in that
switch. Secondary, we maximize the sum of the minimal buffer times between
every two trains that have at least one switch in common. This second opti-
mization goal gives the incentive to further increase the buffer times between
train pairs. Thus here, maximizing the minimal buffer time over all train pairs
gets a high weight in the objective function (HW’) and this weight depends
again on the problem size.

We construct a cyclic hourly timetable, so we suppose that a certain trip
repeats itself every hour. This is what we call a series of a train. It is not
the same physical train that performs this trip every hour, but we represent
each train of a certain series with the same symbol. The cyclicity then in-
duces two time buffers between the passages of a train pair. Let A and B
represent two trains from different series which trips have at least one switch



in common. For example, suppose that train A passes a certain switch at 4
minutes past the hour and train B passes that switch at 50 minutes past the
hour. Then we have 46 minutes between A and B and 14 minutes between B
and A. In our optimization model, we want to work with the shortest buffer
time between two trains, which is the buffer of 14 minutes in the example.
The shortest buffer time between two trains in a switch can be found as the
minimum of the difference of their passage times in that switch and the ab-
solute value of 60 minutes more or less than this difference. In the example,
the shortest buffer time is 14 minutes and this is indeed the minimum of
{|4− 50|, |4− 50− 60|, |4− 50 + 60|} = {46, 106, 14}. Remark that the shortest
buffer time will always be contained in the interval [0, 30].

Parameters
S = {s1, s2, · · · , sq} = set of places/switches where trains can enter the net-
work.
st = the origin (start point) of train t in the network.
rt = the route that was assigned to train t ∈ T in the route choice model. This
route consists of switches (nodes) and links.
dt,s,w = the time that train t ∈ T needs in ideal circumstances to go from s,
where its enters the network, to switch w ∈ rt (on its route).
Tw = the set of trains for which rt contains switch w.

Decision variables
xt,s ∈ [0, 60] = the moment at which train t ∈ T enters the network in point
st ∈ S.
xt,w ∈ [0, 60] = the moment at which train t ∈ T arrives at switch w ∈ W in
the interval [0, 60].
xaux
t,w ∈ [0, 120](i) = the moment at which train t ∈ T arrives at switch w ∈W

by adding dt,s,w to xt,s, i.e. xaux
t,w = xt,s + dt,s,w. It’s not sure that this time

point is in [0, 60].
xbin
t,w ∈ {0, 1} = 0 if xaux

t,w ∈]60, 120] and 1 if xaux
t,w ∈ [0, 60[, if xaux

t,w = 60, then

xbin
t,w can be either 0 or 1. This variable indicates whether the passage time of

train t in switch w, based on the start time of train t in the network and the
time that train t needs to go from switch s to switch w, belongs to the one hour
interval [0, 60] or not, i.e. xaux

t,w = xt,s +dt,s,w ≤ 60 or xaux
t,w = xt,s +dt,s,w ≥ 60

yti,tj ,w ∈ [0, 30] = the shortest buffer time between train ti and tj in switch
w.
yauxti,tj ,w ∈ [0, 60](ii) = a buffer time between train ti and train tj in switch w,
but not necessarily the shortest buffer time.
ybinti,tj ,w ∈ {0, 1} = 0 if yauxti,tj ,w ∈]30, 60] and 1 if yauxti,tj ,w ∈ [0, 30[, if yauxti,tj ,w = 30,

then ybinti,tj ,w can be either 0 or 1. This variable indicates whether the buffer
time yauxti,tj ,w is the shortest buffer time or not.

(i) auxiliary variable for xt,w
(ii) auxiliary variable for yti,tj ,w



vti,tj ,w ∈ {0, 1} = 1 if xti,w ≤ xtj ,w and 0 otherwise. This variable is an
indicator for the sign of xti,w − xtj ,w.

Model
The maximization of the minimum buffer time in a switch can be represented
by:

max
xt,w∈[0,60]
∀t∈T,w∈W

min{|xti,w − xtj ,w + h · 60||h ∈ {−1, 0, 1}, w ∈W, ti, tj ∈ Tw}. (13)

A buffer time between two trains in a switch is a positive number, that is
why the objective function contains absolute values. As explained above, the
shortest buffer time between two trains in a switch can be found as the min-
imum of the difference of their passage times in that switch and the absolute
value of 60 minutes more or less than this difference. This is here captured by
|xw,ti −xw,tj +h · 60| where the parameter h can be -1, 0 or 1. For fixed trains
ti and tj in T and a switch w ∈ W , the shortest buffer time between these
trains in that switch is assigned to the variable yti,tj ,w. Thus, we can rewrite
the goal function as:

max
xt,w∈[0,60]
∀t∈T,w∈W

min
w∈W,

ti,tj∈Tw

yti,tj ,w. (13’)

The maximization of the sum of the minimum buffer times between every two
trains can be represented by:

max
xt,w∈[0,60]
∀t∈T,w∈W

∑
ti,tj∈T

min
w∈rti∩rtj

yti,tj ,w. (14)

The combined weighted goal function is:

max
xt,w∈[0,60]
∀t∈T,w∈W

HW ′ · min
w∈W,

ti,tj∈Tw

yti,tj ,w +
∑

ti,tj∈T

min
w∈rti∩rtj

yti,tj ,w. (15)

However, it is obvious that this objective function is non-linear. So again we
introduce auxiliary variables. We define the variables zti,tj , for all trains ti, tj
that have at least one switch in common. We bound these variables above by
yti,tj ,w for every switch w ∈ W that their routes have in common. This is
described in constraints (18). As a consequence, the maximization of the sum
of the zti,tj ’s implies the maximization of the sum of the minimal buffer times
between every train pair. We also introduce a new decision variable z which
we bound above by all the zti,tj ’s. This is described in constraints (17). As a
consequence, the maximization of z implies the maximization of the minimum



of the yti,tj ,w’s. The timetable determination model then becomes:

max HW ′ · z +
∑

ti,tj∈T :
rti∩rtj 6=∅

zti,tj (16)

s.t. z − zti,tj ≤ 0 ∀ti, tj ∈ Tw : i < j (17)

zti,tj − yti,tj ,w ≤ 0 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (18)

0 ≤ xti,w − xtj ,w + 60vti,tj ,w ≤ 60 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (19)

−xti,w + xtj ,w + yauxti,tj ,w − 60vti,tj ,w ≤ 0 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (20)

xti,w − xtj ,w + yauxti,tj ,w + 60vti,tj ,w ≤ 60 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (21)

30 ≤ yauxti,tj ,w + 30ybinti,tj ,w ≤ 60 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (22)

yti,tj ,w + yauxti,tj ,w − 30ybinti,tj ,w ≤ 60 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (23)

yti,tj ,w − yauxti,tj ,w + 60ybinti,tj ,w ≤ 60 ∀w ∈W, ∀ti, tj ∈ Tw : i < j (24)

xaux
t,w − xt,s = dt,s,w ∀t ∈ T, ∀w ∈ rt \ {st} (25)

60 ≤ xaux
t,w + 60xbin

t,w ≤ 120 ∀w ∈W \ S,∀t ∈ Tw (26)

xt,w − xaux
t,w − 60xbin

t,w ≤ −60 ∀w ∈W \ S,∀t ∈ Tw (27)

xt,w − xaux
t,w − 60xbin

t,w ≥ −60 ∀w ∈W \ S,∀t ∈ Tw (28)

0 ≤ xt,s ≤ 60 ∀t ∈ T

z ∈ [0, 30] (29)

zti,tj ∈ [0, 30] ∀ti, tj ∈ T (30)

xti,w ∈ [0, 60] ∀w ∈W, ∀ti ∈ Tw (31)

xaux
ti,w ∈ [0, 120] ∀w ∈W \ S, ∀ti ∈ Tw (32)

yti,tj ,w ∈ [0, 30] ∀w ∈W, ∀ti, tj ∈ Tw : i < j (33)

yauxti,tj ,w ∈ [0, 60] ∀w ∈W, ∀ti, tj ∈ Tw : i < j (34)

xbin
ti,w ∈ {0, 1} ∀w ∈W, ∀ti ∈ Tw (35)

ybinti,tj ,w ∈ {0, 1} ∀w ∈W, ∀ti, tj ∈ Tw : i < j (36)

vti,tj ,w ∈ {0, 1} ∀w ∈W, ∀ti, tj ∈ Tw : i < j (37)

Constraints (19) - (21) represent if-then constraints to find buffer times (but
not necessarily shortest buffer times) between trains that make use of the same
switch. They express that if train ti passes switch w earlier than train tj in the
interval [0, 60], the duration between these passages, xtj ,w − xti,w (∈ [0, 60]),
is a buffer time between those two trains and vice versa. Remark, however,



that this buffer time is not necessarily the shortest. The order of ti and tj at
switch w in [0, 60] is described by the binary variable vti,tj ,w, which equals 1 if
ti passes switch w before tj in the interval [0, 60] and 0 otherwise. The variable
yauxti,tj ,w is introduced in the model to represent this (not necessarily shortest)
buffer time between ti and tj in switch w, and thus is obtained by subtracting
the passage time of the train that arrives first at switch w in the interval [0, 60]
from the passage time of the other train. Remark that this value is always pos-
itive. We use these variables yauxti,tj ,w again in constraints (22) - (24) to find the
shortest buffer time between the two trains. In fact, constraints (19) - (21)
define the variable yauxti,tj ,w:

IF xtj − xti > 0, THEN yauxti,tj ,w = xtj ,w − xti,w ∈ [0, 60]
and
IF xti − xtj > 0, THEN yauxti,tj ,w = xti,w − xtj ,w ∈ [0, 60].

We can rewrite these if-then conditions by using the theory in footnote (iii).
Because we are maximizing the buffer times, it is enough to put an upper
bound for the yauxti,tj ,w, i.e. we use xtj ,w−xti,w−yauxti,tj ,w ≥ 0 for the first if-then
condition and xti,w − xtj ,w − yauxti,tj ,w ≥ 0 for the second if-then condition. In
our MILP, we then get:

xtj ,w − xti,w ≤ Pvti,tj ,w (40)

−(xtj ,w − xti,w − yauxti,tj ,w) ≤ P (1− vti,tj ,w) (41)

xti,w − xtj ,w ≤ P ′(1− vti,tj ,w) (42)

−(xti,w − xtj ,w − yauxti,tj ,w) ≤ P ′vti,tj ,w, (43)

where we still have to fix a value for P and P ′. We can use the same binary
decision variable for both if-then representations, because these if-statements
are disjoint and complementary. In case vti,tj ,w = 0, then xtj ,w − xti,w is
bounded below by -60, and in case that vti,tj ,w = 1, we equally have that
xti,w−xtj ,w is bounded below by -60, such that we can choose P and P ′ equal
to 60. This leads to constraints (19) - (21), where we put constraints (40) and
constraints (42) together.

(iii) The condition that ‘if constraint f(x1, · · · , xn) > 0 is satisfied, then constraint
g(x1, · · · , xn) ≥ 0 must be satisfied’, where f and g are linear expressions in the decision
variables x1, · · · , xn, can be included into the IP model as follows:

f(x1, · · · , xn) ≤ P (1 − y) (38)

−g(x1, · · · , xn) ≤ Py (39)

where y is a binary decision variable and P is a large positive number such that f ≤ P
and −g ≤ P hold for all values of x1, · · · , xn that satisfy the other constraints in the
problem. Indeed, if f(x1, · · · , xn) > 0, then constraint (38) imply that y must equal 0, such
that (39) implies that −g(x1, · · · , xn) ≤ 0 or g(x1, · · · , xn) ≥ 0. The other way around, if
f(x1, · · · , xn) ≤ 0, then y can be either 0 or 1, such that g(x1, · · · , xn) is only bounded
below by −P , instead of 0. (Winston, 2004)



Constraints (22) - (24) are also translations from if-then constraints into the
MILP-model. These constraints are included to determine the shortest buffer
time between two trains that make use of the same switch on the basis of the
buffer time that we fixed in constraints (19) - (21) in the variable yauxti,tj ,w. If
yauxti,tj ,w ∈ [0, 30], then it is the shortest buffer time between train ti and train tj
in switch w. On the other hand, if yauxti,tj ,w ∈]30, 60], then it is not the shortest
buffer time between train ti and train tj in switch w, but then 60− yauxti,tj ,w is.
The decision variable yti,tj ,w is introduced to define this shortest buffer time
between trains ti and tj in switch w. We have the following conditions:

IF yauxti,tj ,w − 30 > 0, THEN yti,tj ,w = 60− yauxti,tj ,w,
and
IF 30− yauxti,tj ,w > 0, THEN yti,tj ,w = yauxti,tj ,w.

Again by using the theory in footnote (iii), we find constraints

yauxti,tj ,w − 30 ≤ P (1− ybinti,tj ,w) (44)

−(yauxti,tj ,w − yti,tj ,w) ≤ Pybinti,tj ,w (45)

30− yauxti,tj ,w ≤ P ′ybinti,tj ,w) (46)

−(60− yauxti,tj ,w − yti,tj ,w) ≤ P ′(1− ybinti,tj ,w), (47)

where the right-hand-side values P and P ′ can here be set to 30, because yauxti,tj ,w

is bounded above by 60 by constraints (19) - (21). Since the if-statements are
again disjoint and complementary, the same binary variable, ybinti,tj ,w, can be
used in both representations. Moreover, also here we only set an upper bound
on the variable yti,tj ,w, because we are maximizing buffer times. Remark that
for the case that yauxti,tj ,w = 30, then ybinti,tj ,w is not uniquely defined by con-
straints (44) - (47). However, yti,tj ,w is in that case uniquely determined with
a value of 30. This leads to constraints (22) - (24), where we again put the
if-constraints together, in this case constraints (44) and constraints (46).

Constraints (25) fix the time between the moment at which the train enters
the network and the moment at which the train passes a certain switch on
its route. Here, dt,s,w is a fixed value determined in advance based on known
distances and speed limits (and if necessary supplements and waiting times).
Remark that xaux

t,w can be assigned a value outside [0, 60], that is why it has the
superscription ‘aux’ and why constraints (26) - (28) are necessary. However,
we assume that xaux

t,w never exceeds the interval [0, 120].

Constraints (26) - (28) also represent if-then constraints to find the time in-
stants in the interval [0, 60] at which a certain train passes each switch on its
route that is different from the start switch of that train. We need to know these
time instants to be able to find the buffer times yauxti,tj ,w ∈ [0, 60]. These time in-
stants are represented by the variables xt,w. More specifically, if xaux

t,w ∈ [0, 60],



then we want that xt,w equals xaux
t,w , otherwise if xaux

t,w ∈ [60, 120], then xt,w

has to be xaux
t,w − 60. Remark that xt,w is not uniquely defined if xaux

t,w equals
60. However, this does not cause any problems in constraints (19) - (21). The
if-then statements are here:

IF xaux
t,w − 60 > 0, THEN xt,w = xaux

t,w − 60,
and
IF 60− xaux

t,w > 0, THEN xt,w = xaux
t,w .

To translate these if-then constraints to our MILP-problem, we cannot use
the same trick to only bound the decision xt,w below or above, as its relation
to the objective function is different. That is why we include two constraints to
catch the equality in the ‘then’-part. We use again the theory in footnote (iii):

xaux
t,w − 60 ≤ P (1− xbin

t,w) (48)

−(xt,w − xaux
t,w + 60) ≤ Pxbin

t,w (49)

−(−xt,w + xaux
t,w − 60) ≤ Pxbin

t,w (50)

60− xaux
t,w ≤ P ′xbin

t,w (51)

−(xt,w − xaux
t,w ) ≤ P ′(1− xbin

t,w) (52)

−(−xt,w + xaux
t,w ) ≤ P ′(1− xbin

t,w). (53)

The right-hand-side values P and P ′ can be set to 60, because xaux
t,w is bounded

above by 120. Remark that constraint (52) is stronger than constraint (49):

−xt,w + xaux
t,w − 60xbin

t,w ≤ 60 (49’)

−xt,w + xaux
t,w + 60xbin

t,w ≤ 60, (52’)

because xbin
t,w is a binary decision variable. Also constraint (50) is stronger than

constraint (53):

xt,w − xaux
t,w − 60xbin

t,w ≤ −60 (50’)

xt,w − xaux
t,w + 60xbin

t,w ≤ 60. (53’)

Indeed, if xbin
t,w = 1, then both constraints reduce to the same constraint and

if xbin
t,w = 0, then the upper bound of xt,w − xaux

t,w in constraint (50) is lower. If
we combine constraints (48) and (51), then this leads to constraints (26) - (28).

The last constraints (29) enforce that the times at which the trains enter
the network are included in the interval [0, 60]. This concludes the explanation
of timetable determination model.



3.3 Small case study

We demonstrate our approach on the fictive and schematic network in Fig. 1.
The bold circles represent switches and the numbers next to the arrows are
time durations to get from one end of the corresponding link to the other end.
We consider 6 trains on our network for which the origin and destination in
the network and all the possible routes that link these points are represented
in Table 2. These routes are visualized in Fig. 2. We implement both the route
choice model and the timetable model in C++ and they are solved by CPLEX
12.6 on an Intel Core i7 with 8 cores. For this small case study, both models
are solved in less than one second.

The output of the route choice model is presented in Fig. 3. The maximum
number of times that a switch is used is 3, which already implies that the mini-
mum buffer time over all switches can never be higher than 20. The sum of the
quadratic number of usages over all switches is 63. The output of the timetable
determination model is presented in Fig. 4. The table on the left presents the
minimal timespan between every train pair that has at least one switch in
common. In the figure on the right, each colour represents a train. The min-
imal timespan between two trains in the optimal solution is 20 minutes. The
sum of the minimal timespans between every train pair is 145 minutes.

Fig. 1 Network of the small case study

Table 2 Train information

Train Origin Destination Possible routes

0 15 10 5, 6, 7, 8
1 15 12 9
2 13 10 3, 4
3 11 14 1, 2
4 11 14 1, 2
5 9 13 0
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Fig. 2 Train routes

Train Assigned route

0 5
1 9
2 3
3 2
4 2
5 0

Fig. 3 Output of the route choice model: route assignment and switch usage



Train pair minimal
time span

0 - 1 30
0 - 2 30
0 - 3 20
0 - 4 20
2 - 5 25
3 - 4 20

Fig. 4 Output of the timetable determination model: minimal time spans between train
pairs (in minutes) and passage times (train 0, train 1, train 2, train 3, train 4, train 5)

4 Case study

We perform a case study on the dense railway area of Brussels, which contains
3 out of 5 of Belgium’s busiest stations. It also includes the beginning of the
open tracks, the outer grids, and the entrances to the shunt yards. The core
of this area is presented in Fig. 5 and a schematic overview of the entire sta-
tion area is presented in Fig. 6.(iv) We consider every border point, every point
where two tracks cross and every platform as a switch in the network. We then
have 481 switches. The network contains 6 station areas with 22, 6, 6, 6, 12 and
12 platforms. The total number of routes that starts at a border point or plat-
form track and ends at a border point or platform track amounts 28 970 248!
We consider 85 trains that pass through this network during the morning peak
hour between 7 and 8 o’clock. In a first (preprocessing) step we generate for
each train all the routes that connect its origin and destination in the network.

We apply some simplifications to make the models manageable on this com-
plex network. To limit the number of routes (and thus the number of decision
variables) in the route choice model, we consider for every feasible platform
combination only one route per train, for example the shortest route or the
route that contains the smallest amount of switches. Since most border points
are connected to different platforms, this still leaves many possible routes per
train from its origin to its destination (median: 361, minimum: 15). However,
one could argue that this converts the problem from a routing problem to a
platforming problem. This routing problem can be solved within 20 minutes
up to a gap of 0,2%:

gap =
best found integer solution - best found lower bound

best found lower bound
. (54)

For the timetable determination problem, we reduce the number of switches
in which buffer times have to be optimized. We only maximize the buffer time

(iv) Source: http://www.infrabel.be/sites/default/files/documents/ns c-01-map-net-
1045901 1.pdf, consulted in September 2014.
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Fig. 5 The core of Brussel’s dense railway area

Fig. 6 A schematic overview of the entire station area of Brussels

in every switch with a switch usage (strictly) higher than 8 and we impose a
buffer time of at least five minutes in switches with a switch usage of 8 or less:

yti,tj ,w ≥ 5 ∀w ∈W, ti, tj ∈ Tw : gw ≤ 8. (55)



We take 8 usages as a boundary on the switch usage in constraint (55) to
significantly reduce the number of switches in which the spreading has to
be optimized during the timetable construction (reduction from 482 to 114
switches). We use 5 minutes as a lower bound on the minimal buffer in the
switches with usage lower than 8 to provide a workable minimal buffer in
practice and to leave enough flexibility in constraints (55).
As the timetable is cyclic, a solution to the timetabling problem can be adapted
to another solution by adding a fixed value to all the passage times. To cut
off all these equivalent solutions, we fix the start time of one of the trains, for
example train 0:

x0,s = 0. (56)

Furthermore, the route choice model provides an upper bound on the minimum
buffer time. As the maximum usage of a switch equals U , then the minimum
buffer time will not be higher than 60

U . Thus, we can add the constraint

z ≤ 60

U
. (57)

We compare some performance criteria of different routing plans. A first rout-
ing is one that was implemented by the Belgian railway companies on the
network in 2012. We will refer to this routing plan as the reference. A second
routing plan is the result from applying the optimization algorithm of Dewilde
et al. (2013, 2014) on a reference timetable (from Infrabel) and the reference
routing plan. Dewilde et al. (2014) maximize the sum of the minimal buffer
times between (release and reserve times of) every two trains by an iterative
approach. They optimize the routing for a fixed timetable and platform as-
signment on the one hand and they make small changes to the timetable and
platform assignment on the other hand. The third routing plan is the result
from applying the extended version of the optimization algorithm of Dewilde
et al. (2014) on the same reference timetable and the reference routing plan
(Burggraeve et al., 2015). In this approach, the selection of the buffer times
that are enlarged depends on the probability of causing delay propagation due
to recurring delays and on the number of passengers that will be affected in
case of delay propagation through this buffer. The fourth routing plan is con-
structed by the algorithm presented in this paper.

Table 3 compares the switch usage of the different approaches. In the first
row the maximum switch usage is given. We see that our model was not able
to improve this maximum usage. The observation that this number is the same
for all of the different approaches can be explained by the fact that the origins
and destinations of the trains in the case study dictate this maximum switch
usage. The second row presents the quadratic penalizations of the switch us-
ages, which is the second criterion that is optimized in the route choice model.
We see that this quadratic penalization decreased with 7,6% compared to
the reference routing plan and with 8,0% compared to the routing plan of
Burggraeve et al. (2015). The third and fourth row present the number of



switches with a switch usage strictly higher than 6 and 12 respectively. Re-
mark that the number of switches with a switch usage equal to or higher than
0 is 481 and with a switch usage strictly higher than 16 is 0 for all approaches.
The number of switches with more than 6 or 12 usages is decreased from 196
to 191 and 55 to 48 respectively for the reference routing plan and from 215 to
191 and 62 to 48 respectively for the routing plan of Burggraeve et al. (2015).
The output of the route choice model gives us a detailed view on the planned
switch usage on our network. This information can be useful for disruption
management.

Table 3 Switch usage in the routing plans

Approach Reference Dewilde et al. Burggraeve et al. Route choice
(2014) (2015) model

min maxw∈W gw 16 16 16 16∑
w∈W g2w 27565 27410 27698 25481

#w : gw > 6 196 198 215 191
#w : gw > 12 55 62 62 48

We cannot directly compare the output from the timetable determination
model with the timetables from the other approaches, because our model maxi-
mizes buffer times between train passages in switches, but does not take reserve
and release times into account yet.

5 Conclusion and future work

This paper presents a model to build a railway timetable and a routing plan for
a busy railway station area from scratch. This approach focusses on the area
where designing a robust timetable is the most difficult, i.e. in the largest bot-
tleneck. We assume that the resulting timetable can be made feasible outside
this bottleneck without many changes since much less constraints are present
there. In order to improve the total travel time of all passengers in practice
in case of frequently occurring small delays, we optimally spread the trains
in space and time. The maximum switch usage and the switch usage of each
individual switch is minimized by the route choice model. The timetable deter-
mination model maximizes the minimal buffer time over all switches, as well as
the buffer time between every two trains that share a part of the infrastructure.

Based on a small case study we illustrated that our approach is indeed ef-
fective. Furthermore, we showed that our route choice model can decrease the
switch usage in Brussel’s railway station area with 7-8% compared to a refer-
ence routing plan and the routing plan of Burggraeve et al. (2015). We also
have a detailed view on the planned switch usage in our network. This infor-
mation can be useful for disruption management.



The first thing to do next is including reserve and release times of switches
in the timetabling model such that the constructed timetable not only takes
the passage times in switches but also the occupation times into account and
becomes useful in practice. This will enable a full validation of the timetable
determination model on the complex case study. It would also be interesting
to further adapt the presented models or further improve the solution method
in order to make them more efficient for large networks.
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