
Line planning – an important step in railway strategic planning

Infrastructure design Lines and frequencies Timetable Rolling stock schedules Crew schedules

A set of train lines (line concept):

- Paths between two terminal stations
- Symmetric stopping pattern in both directions
- Periodic: fixed frequency within a time period

DSB line planning problem

Feasibility constraints:

- → Contract between DSB and Ministry of Transport:
 - Frequency of trains per network segment (lower bounds)
 - Number of stops per station
 - Direct connections between chosen cities
- → Passenger demand is satisfied:
 - Line frequency
 - Rolling stock composition capacity
- → Operational requirements:
 - Frequency of trains per network segment (upper bounds)
 - Limited number of line terminations at some end stations
 - Some line combinations are not feasible
 - Limits to the rolling stock assigned to the plan

Objectives:

- What is optimal?

- → Minimize operational costs:
 - Train driving minutes (driver costs)
 - Rolling stock kilometer costs (every carriage in operation)
 - The unit cost of using one train carriage in the plan
- → Maximize plan's attractiveness from the passenger's point of view:
 - Frequency of the line (as often as possible)
 - Train capacity (as many seats as possible)
 - Short driving time (on a train)
 - Short travel time, including time for switching lines
 - As few line switches as possible
- → Find solutions with specific properties:
 - Lines with specific properties
 - Train driving minutes of lines with specific properties

Conflicting objectives!

Line planning problem formulations

Passenger-oriented models:

- Direct travellers approach
- Total travel time
- Number of lien changes

Given an operational budget

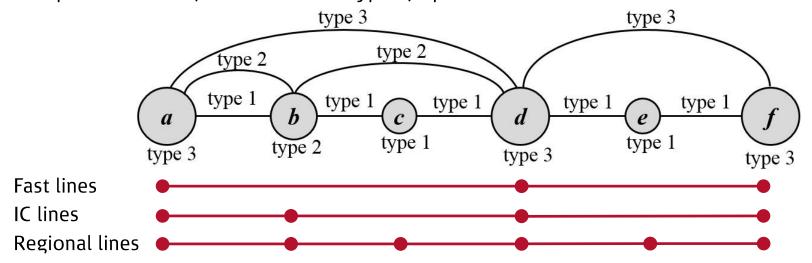
Cost-oriented models:

Minimize operational costs

Given a minimum level of quality for passengers

J. W. Goossens, S. van Hoesel, and L. Kroon, "On solving multi-type railway line planning problems", EJOR, 2006.

Modelling decision variables

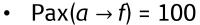


Goossens, van Hoesel & Kroon 2006

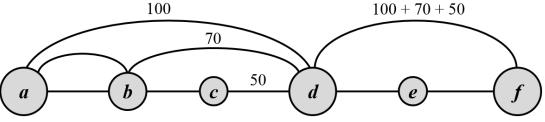
- → A binary variable for each combination of:
 - Line (route and stopping pattern)
 - Frequency
 - Rolling stock composition assigned to the line

seat capacity of the line

→ Line patterns are generated on a type graph:



Passenger demand and line seat capacity



Goossens, van Hoesel & Kroon 2006

- → Given an OD-matrix of passenger relations and assuming that passenger prefer shortest driving time routes, we estimate the preferred traffic load on each arc of the type graph:
 - Example with 3 passenger relations:

- $Pax(b \to f) = 70$
- $Pax(c \to f) = 50$

- → Not all passengers will have their preferred travelling route in the optimal line planning solution: we only ensure that the *total seat capacity* for each network segment is big enough to cover the *total traffic load* on covering arcs.
 - Example: for network segment (*c*, *d*):
 - line capacity $(c, d) \ge 50$
 - line capacity $(c, d), (b, d) \ge 50+70$
 - line capacity (c, d), $(a, d) \ge 50+100$
 - line capacity (c, d), (b, d), $(a, d) \ge 50+70+100$

The model allows different line stopping patterns in one optimization

Extra constraints

- Upper and lower bounds on the frequency on each network segment
- → Upper and lower bounds on the number of stops at each station
- → Upper bound on the number of carriages of each fleet type in the plan
- → Upper bound on line terminations at certain end stations
- → Lines with specific characteristic are not allowed to exist together in the plan

Modelling the cost function

Operational costs:

- → Line driving distance and time:
 - Train km and minute cost
- → Assigned rolling stock composition:
 - Carriage km and minute cost
- → Minimum number of trains needed for the line within the time period:
 [line circulation time × frequency]
 time period length

Train unit cost

Passenger attractiveness:

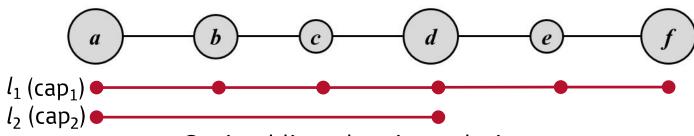
- → Line frequency:
 - High frequency is more attractive
- → Assigned rolling stock composition:
 - More seats are more attractive
- → Passenger demand along the route:
 - Lines with higher traffic load along route are more preferable

Conflicting objectives with weights in objective function

Scenario analysis or multi-criteria optimization

Strengths and weeknesses of the model

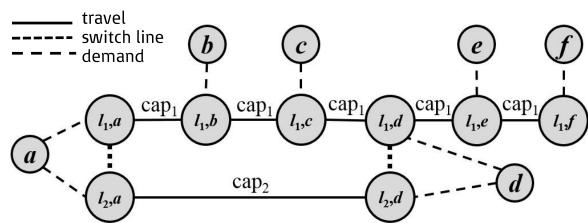
Strengths:


- → Easy to model all operational *costs* on decision variables
- → Easy to add extra *operational* and *contractual* constraints to the model
- → Possible to express some of the passenger-attractiveness parameters on decision variables
- → Good model formulation solvable to optimality for realistic problem instances

Weeknesses:

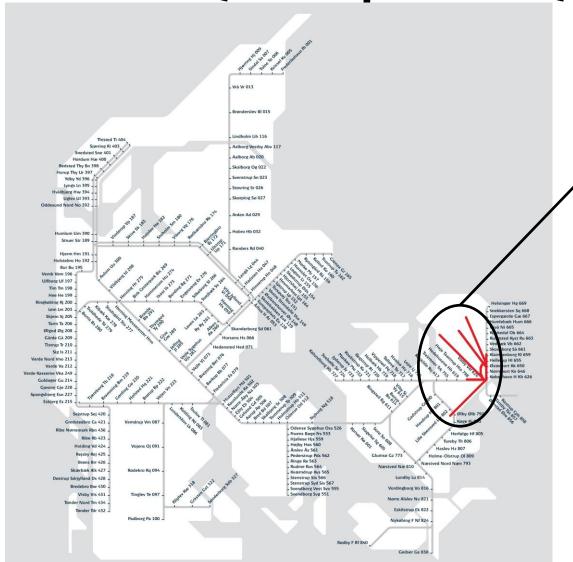
- → Requires *a priori* line pool generation
- → Rolling stock composition assignment assumed unchanged during the whole round-trip of a line, causing over-estimation of rolling stock
- → Not possible to minimize passenger travel time *including* line switches

Evaluating passenger perspective



Optimal line planning solution

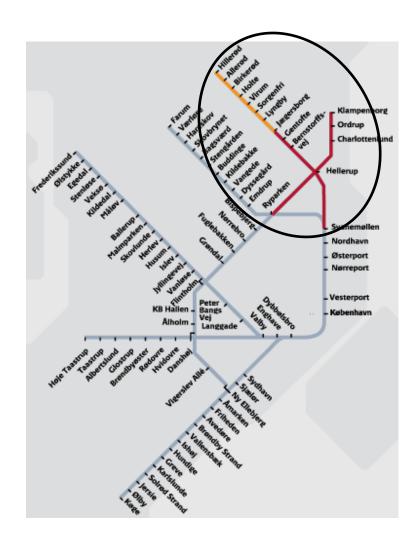
Change-and-go graph (Schöbel & Scholl 2005)



Capacitated multi-commodity network flow problem

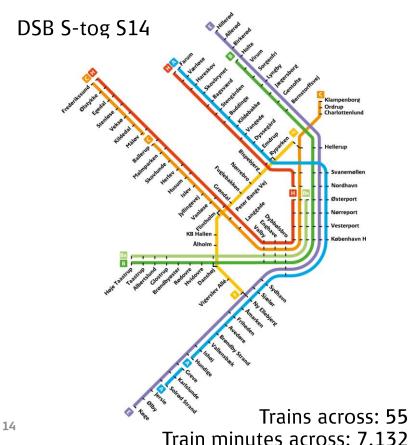
Case study in October 2014: DSB S-tog, line planning S16

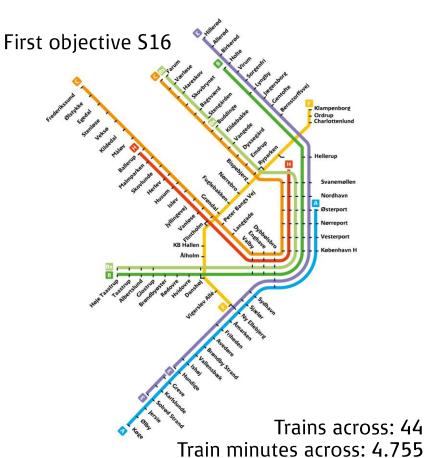
Frederikssund


Freder

DSB S-tog network: fast and slow lines

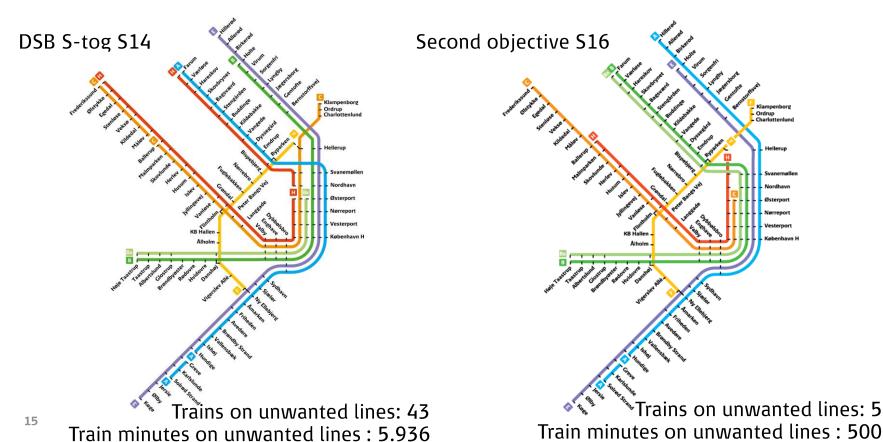
Challenges for line planning on S-bane 2016


- → Signalling Programme: S-bane to be equipped with CBTC signalling system.
- → Phase 2 north of Svanemøllen and Ryparken stations: estimated finish beginning of 2016.
- → The challenge:
 - Not all train drivers were planned to be licensed for CBTC at the beginning of 2016.
 - Only licensed drivers are allowed to drive under both signalling systems
 - Wish to have as few driver duties with driving on both signalling systems!



First line planning objective for S16

- → Problem: Not all train drivers are planned to be licensed for CBTC.
- → Objective: Minimize train minutes of lines running across two signalling systems.

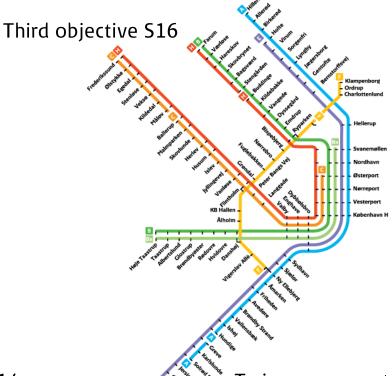


Second line planning objective for S16

- → New information: All drivers at Hillerød and Køge depots will be licensed. Therefore the two segments are to be covered by the same lines.
- → Objective: minimize train minutes of lines connecting unwanted segments.

Third (and final!) line planning objective for S16

→ New wish: S16 is to be similar to S15, at the same time respecting the above!


→ Objective: minimize train minutes of lines that: 1) do not exist in S15 and
 2) connect unwanted segments.

Train minutes on unwanted lines: 14

Train minutes on unwanted lines: 1.892

Train minutes as in S15: 100%

Trains on unwanted lines: 5
Train minutes on unwanted lines : 500
Train minutes as in S15: 83%

S16 story – update July 2015

- → Signalling Programme is delayed
- → All drivers will be licensed when Phase 2 is implemented
- → DSB S-tog continues with S15 line plan until the next big challenge occurs

The lessons learned

- → The implemented line planning optimization tool is useful for strategic planning:
 - Flexible objective function
 - Evaluating manual solutions
- → We are interested in more passenger perspective optimization:
 - PhD project at DTU Management (Simon Bull)
- → We are interested in a more sophisticated automatic line pool generation
- → Adressing the over-estimation of the rolling stock capacity
- → All aspects of planning are inter-connected:
 - Investigate integrated approaches!

Thank you