The Rapid Transit Frequency and Fleet Size Setting with Maximal Profit

Alicia De los Santos, Juan A. Mesa, University of Seville Federico Perea, Polytechnic University of Valencia

Outline

- Rapid Transit Systems
- Line Planning Objective Functions
- Data and notation
- Variables
- Objective function
- Constraints
- MIP Approach
- Solution procedures

- Metro, Underground, U-bahn
- Ligh Metro
- Light Rail
- Monorail
- Commuter train

Segregated from other modes though there are hybrid systems (German Stadtbahn, light rail, etc.)

- Metro/Underground/U-bahn,etc.: 191 cities, 49 inaugurated in the 21st century. 36 in construction
- China: 22 metros in operation, 36 for 2020
- Commuter systems: ?
- Most of the new metros are in the "3rd world" in very big cities

Main features of RTS

- RTS have characteristics of both railway network and public transit
- Operate in cities and metropolitan areas
- Carry a large number of passengers traveling on short distances
- Headways are usually very short

- RTS compete (and sometime co-operate) with other modes of transportation (bus, car, bicycle)
- Often line railway tracks are not connected and platforms of different lines in multiple stations are at different levels
- In old systems (Paris, London, New York) some transfers need several minutes

- Regarding the sequential planning process:
- 1st Stage: Line network design (infrastructure design of lines)
- 2nd Stage: Frequency and capacity setting
- Since the demand is time-dependent and elastic the frequency and capacity setting problem has to be solved for different periods of the day, week, seasons, etc

Line Planning

- Bussiek, Optimal Line in Public Rail Transport (1997)
- Goessens, Van Hoesel, Kroon, A Branch-and-cut Approach for Solving Railway Line-planning Problems (2004)
- Schöbel, Line Planning in Public Transportation: Models and Methods (2012)
- Gallo, Montella, D'Acierno, The Transit Network Design Problem with Elastic Demand (2011)
- Schmidt, Integrating Routing Decision in Public Transportation Problems (2014)

Objective functions

Two groups

Oriented to customers: travelling and riding time, number of direct travelers, number of transfers

Oriented to the operator company: fixed and variable costs

Objective functions

- Relationship between costs and incomes
- PROFIT = REVENUE COST
- It is not only a operator-oriented objective because revenue depends on ridership which is an efficiency indicator.

The problem

• Aim:

To assign the frequency per hour, and the number of carriages, to each line, so that the net profit is maximized

- Let $N = \{i_1, \dots, i_n\}$ be the set of stations and $\mathcal{L} = \{\ell_1, \dots, \ell_{|\mathcal{L}|}\}$ the line set
- A line $l \in \mathcal{L}$ can be represented by a chain graph with edges $\{i_{j_1}, i_{j_2}\}$
- The line network is $((N, E), \mathcal{L})$ where E is the union of all edges of the lines
- Let d_{ij} be the length of edge $\{i,j\}$ and λ the commercial speed

- Let $\nu_{\ell} = 2L_e/\lambda$ be the cycle time of ℓ , being the length L_e
- Let $G_{E'} = (N, E')$ be the network of the alternative mode, d'_{ij} being the length of edge $\{i, j\} \in E'$
- Let W = {w₁,...,w_{|W|}} be the set of OD pairs and *gw* the demand of pair *w* u^{ALT}_w is the travel time of the pair *w* using the alternative mode

Cost structure

- Let c_{loc} and c_{carr} be the operating cost of the locomotive and that of one carriage per unit of length
- *C*_{crew} is the personnel cost per train and year
- *I*_{loc} and *I*_{carr} are the adquisition cost of locomotive and carriage, respectively

Capacity

- \ominus is *the* capacity (the number of passengers) of a carriage
- y^{\min} is the minimum number of carriages of a train

- $\eta\,$ is the ticket fare
- au is the passenger subsidy
- ho is the number of hours per year
- $\widehat{
 ho}$ is the time horizon in years
- Δ_i is the time spent in transferring at i
- $\mathcal{H} \subset \mathcal{Z}^+$ is the set of possible headways

Variables

- $x_l \in \mathcal{H}$ is the headway of line ℓ
- $y_l \in \mathcal{Z}^+$ is the number of carriages of trains of line ℓ
- u_w^{RTS} travel time of pair w using RTS
- p_w^{RTS} proportion of demand of w captured by the RTS
- $f_{ij}^{w\ell} = 1$ if ℓ traverses arc (i,j) using line ℓ , 0 otherwise
- $t_i^{w\ell\ell'} = 1$ if w transfers in staton i from line ℓ to line ℓ' , 0 otherwise.
- $B_l \in \mathcal{Z}^+$ is the required fleet of line ℓ measured in number of trains

Variables

- Travel time of w in RTS
- = waiting time + in-vehicle time + transfer time

$$u_w^{RTS} = \sum_{\ell \in \mathcal{L}} \sum_{j: \{w_s, j\} \in \ell} \frac{x_\ell f_{w_s j}^{w\ell}}{2} + \frac{60}{\lambda} \sum_{\ell \in \mathcal{L}} \sum_{\{i, j\} \in \ell} f_{ij}^{w\ell} d_{ij} + \sum_{\ell \in \mathcal{L}} \sum_{\ell': \ell' \neq \ell} \sum_{i \in \ell \cap \ell'} t_i^{w\ell\ell'} (\frac{x_\ell'}{2} + \Delta_i), \quad w = (w_s, w_t) \in W$$

Variables

• Modal split

$$p_w^{RTS} = \frac{1}{1 + e^{\alpha - \beta(u_w^{ALT} - u_w^{RTS})}}, \ w \in W$$

• Required fleet as a function of the headway

$$B_l = \lceil 120L_\ell / x_\ell \lambda \rceil$$

Objective Function

• Net Profit = Revenue - Cost

$$z = z_{rev} - (z_{rc} + z_{fic} + z_{cr})$$

$$z = \rho \hat{\rho} (\eta + \tau) \sum_{w \in W} g_w p_w^{RTS} -\rho \hat{\rho} \sum_{\ell \in \mathcal{L}} \lambda B_\ell (c_{loc} + y_l c_{carr}) - \sum_{\ell \in \mathcal{L}} (I_{loc} + I_{carr} y_\ell) - \hat{\rho} c_{crew} \sum_{\ell \in \mathcal{L}} B_\ell$$

Constraints

• Transfer Contraints

$$t_k^{w\ell\ell'} \ge \sum_{j:(k,j)\in\ell} f_{kj}^{w\ell} + \sum_{i:(i,k)\in\ell'} f_{ik}^{w\ell'} - 1$$

$$w \in W, \ell \neq \ell' \in \mathcal{L}, k \in \ell \cap \ell', k \neq w_s, w_t$$

Constraints

• Flow conservation constraints

$$\sum_{\ell \in \mathcal{L}} \sum_{i:(i,k) \in \ell} f_{ik}^{w\ell} - \sum_{\ell \in \mathcal{L}} \sum_{j:(k,j) \in \ell} f_{kj}^{w\ell} = \begin{cases} 0, k \in N \setminus \{w_s, w_t\} \\ -1, k = w_s \\ +1, k = w_t \end{cases}$$

Constraints

• Upper bound on the number of passengers

$$x_{\ell} \sum_{w \in W} g_w p_w^{RTS} f_{ij}^{w\ell} \le 60 \Theta y_{\ell}, \ \ell \in \mathcal{L}, \{i, j\} \in E$$

- $y_{\ell} \in \mathcal{Z}^+, \ f_{ij}^{w\ell} \in \{0, 1\}, \ x_{\ell} \in \mathcal{H} \subset \mathcal{Z}^+ \\ t_k^{w\ell\ell'} \in \{0, 1\}, p_w^{RTS} \in [0, 1]$
- Thus it is a Mixed Integer Non-Linear Programming (MINLP) program

MIP approach

- The product $p_w^{RTS} f_{ij}^{k\ell}$ can be linearized
- The logit can be approximated by a piecewise linear function
- The required fleet uses the non-linear ceiling function and the headway is in the denominator. Considering the headway as a parameter the problem becomes a $ILP(x_1, \ldots, x_{|\mathcal{L}|})$

ILP-based Algorithm

- Input Data: Line Network, Demand (G), parameters
- For each combination of headways

$$(x_1, \ldots, x_{|\mathcal{L}|})$$

solve $ILP(x_1, \ldots, x_{|\mathcal{L}|})$

- end
- Compute $\operatorname{arg\,max}_{(x_1,\ldots,x_{|\mathcal{L}|})} ILP(x_1,\ldots,x_{|\mathcal{L}|})$

Passenger-oriented Algorithm

Input Data: Line Network, Demand (G), Parameters

for each combination of headways do

 $\mathsf{let} \, \mathsf{Z}{=}\{\,\}$

Compute the shortest path for each OD pair

and the number of passengers traveling on

each line and arc

for each line do

Find the arc with maximum load;

Find the minimum number of carriages needed to

transport all passengers traversing

end Compute the profit z_{NET} and keep this value Z=ZU{ z_{NET} }

end

Compute the maximum net profit

Output: headways and capacities for maximum profit

An example

•	instance	profit (java)	nb trips (java)	CPU time (java)	profit (gams)	nb trips (gams)	CPU time (gams)
•	seed1	14653625433,00	42507,73804	25,524	14653625433,00	42507,73804	2906
•	seed2	14798133449,00	42769,27686	25,429	14798133449,00	42769,27686	2757,831
•	seed3	13967809433,00	40805,87791	25,49	13967809433,00	40805,87791	2793,178999
•	seed4	14934703086,00	43792,43812	25,467	14934703086,00	43792,43812	2758,832
•	seed5	13556226517,00	39396,90291	25,851	13556226517,00	39396,90291	2703,566
•	seed6	13269902666,00	40182,34353	25,129	13269902666,00	40182,34353	2740,568
•	seed7	14786292666,00	43306,02259	25,767	14786292666,00	43306,02259	2708,875
•	seed8	15134405421,00	44312,23282	25,445	15134405421,00	44312,23282	2792,209999
•	seed9	12626577094,00	38857,12863	25,503	12626577094,00	38857,12863	2804,843
•	seed10	15002705176,00	43824,09965	25,328	15002705176,00	43824,09965	2767,416

Figure 1.9.: Representation of $15\times 5\text{-configuration}.$

J.A. Mesa CASPT 2015, Rotterdam 18th July

Further research: The Capacitated Problem

- CROWDING IN TRS
- "The unpleasant experience of too many passengers fitting into a confined space thus worsening passenger's wellbeing"

 Several effects: platform crowding, excessive waiting time, increased dwell time, in-vehicle time

Crowding in TRS

Platform crowding
 Excessive waiting time

Crowding in TRS

Increased dwell time
In-vehicle crowding

Crawding

The End Thank you for your attention!!

MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD

Unión Europea

Fondo Europeo de Desarrollo Regional Fondo Social Europeo