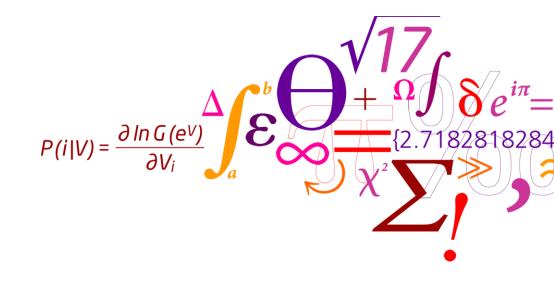


An optimisation framework for determination of capacity in railway networks

Lars Wittrup Jensen

CASPT 2015 Rotterdam

DTU Transport Department of Transport

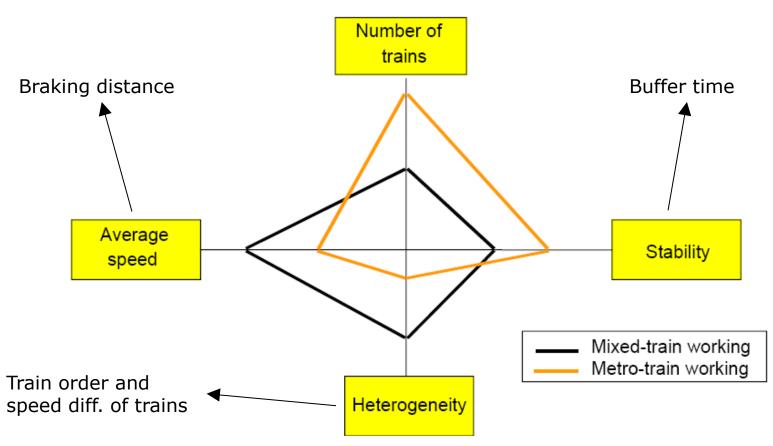


Agenda

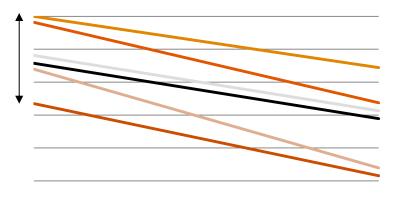
- 1) Introduction
- 2) Optimisation framework for determining railway capacity
- 3) Capacity consumption in railway networks
- 4) Optimisation framework continued
- 5) Case
 - 1) Computational results
 - 2) Capacity results
- 6) Solution space
- 7) Conclusions and further work

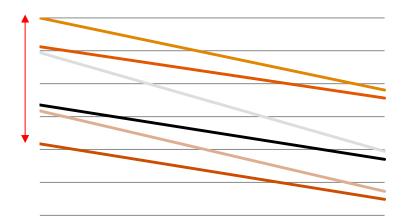
What is railway capacity?

"Capacity as such does not exist. Railway infrastructure capacity depends on the way it is utilised." (UIC, 2004)

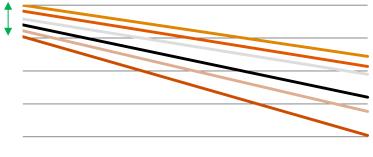


How to mix trains - Heterogeneity





- n! for acyclic timetables
- (n-1)! permutations for cyclic timetables
- If more than 1 copy of a train type (k):
 - n!/(k₁!k₂!...k_m!)
 (Multinomial coefficient)



Objective

- What is the number of trains that a railway network can handle under a given robustness threshold?
- Strategic planning: no train sequence/timetable is given beforehand
- As railway capacity depends on the sequence of trains, a span of number of trains must be found rather than a single value

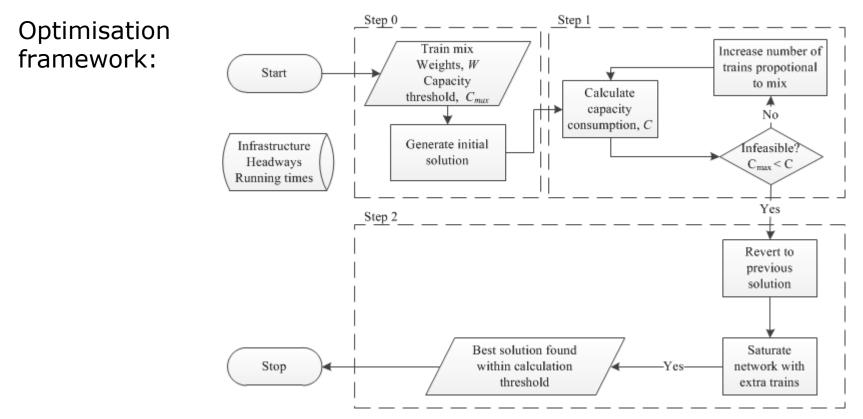
Approach for determining railway capacity

- A train mix is given, e.g.
 - 20% of type A, 40% of type B and 40% of type C

- The output is trains that can pass the network
 - According to mix, e.g.

• Extra trains that saturate the network according to weights, e.g.

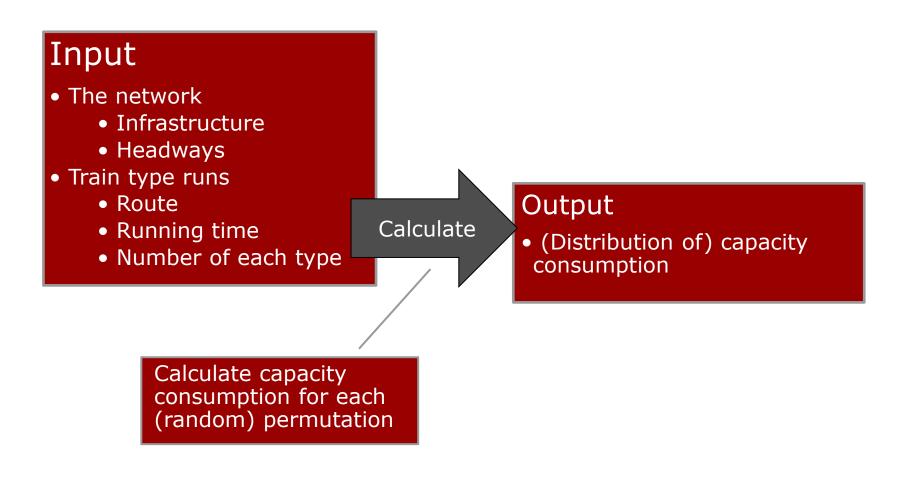
Framework



Measuring capacity consumption

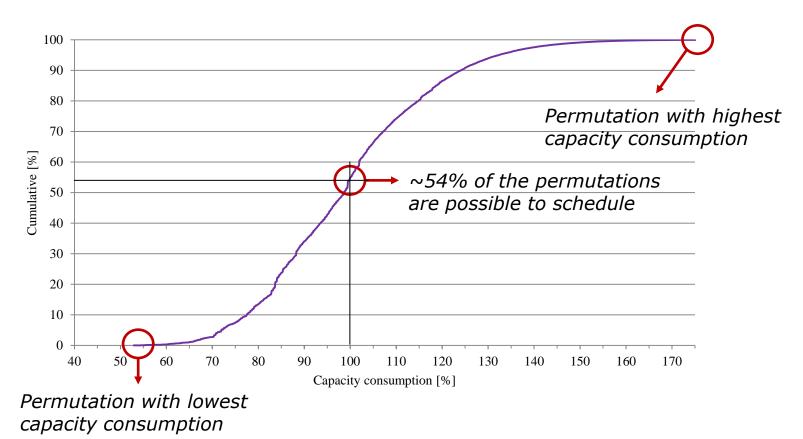
- The model/method used for capacity consumption measurement must fulfil the following requirements:
 - If an extra train is added to a network:
 - The capacity consumed will never decrease compared to the previous solution (without the extra train)
 - Likewise, if a train is removed the capacity consumed will never increase
- If the span of capacity must be obtained, the model has to account for this as well (heterogeneity)

Our capacity consumption model

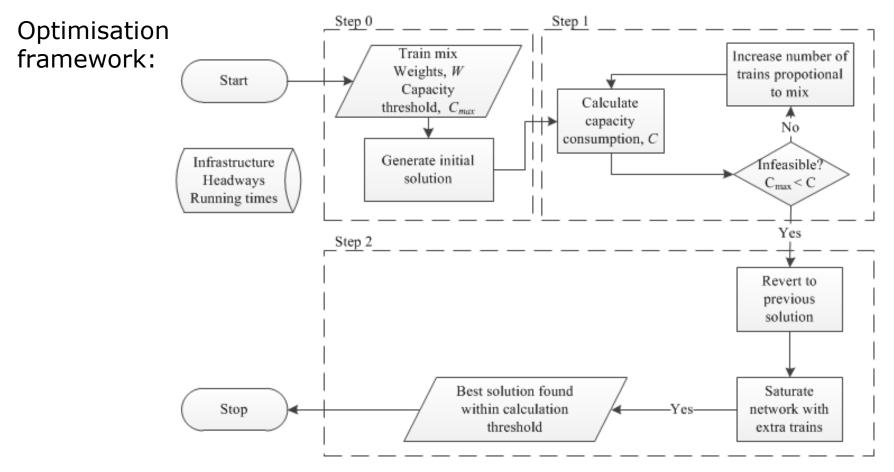


Deterministic capacity consumption

- Output
 - Cumulative distribution of capacity consumption



Framework

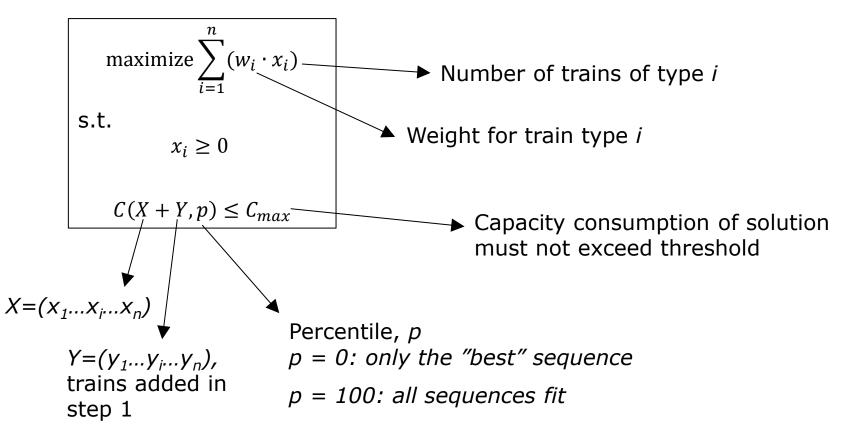


Obtaining capacity span

- For the capacity consumption calculation, *C*, a percentile, *p*, is required
- Can be done for different values of *p* to obtain a span of trains:
 0: maximum number of trains (can only be fitted in perfect order)
 - 50: median number of trains (only for 50% of the sequences)
 - 100: minimum number of trains (can always be fitted)

Mathematical model for step 2

• Step 2: We want to add as many extra trains as possible



Determining absolute railway capacity

- Simple problem, except:
 - C(X+Y,p), the capacity consumption, is expensive to evaluate
- Well-known within simulation-based optimisation
 - Simulation can be approximated using e.g. Response Surface Model based on regression or neural networks
 - A good approximation will provide quality solutions fast
- However, in simulation-based optimisation simulation is used for the objective function not the constraints

Solution method

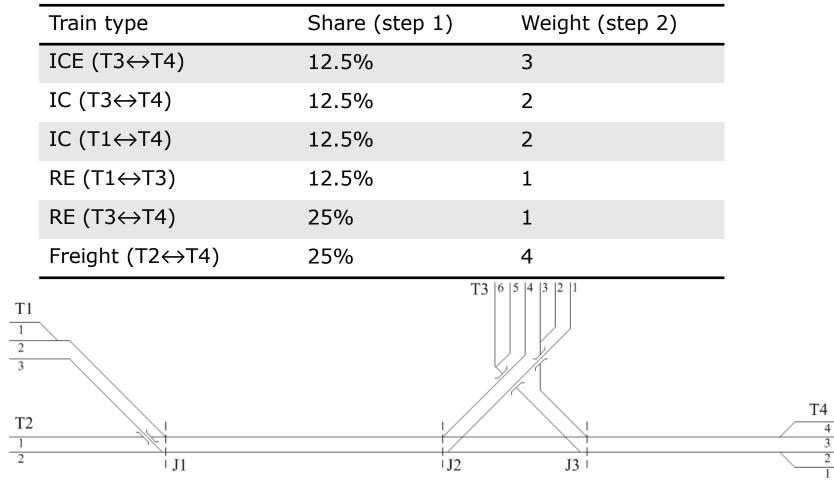
- Model solved using a greedy heuristic
- A modified binary search is used to find the maximum number of trains to add of a type (*dSearch* in the code below)

Algorithm 1: Pseudocode for greedy heuristic.

Data: Weights, $w_i \in X$ Result: $X^* = (x_1, ..., x_i, ..., x_n)$ a solution that maximize $\sum_{i=1}^n (w_i \cdot x_i)$ $x_i^* = 0 \quad \forall i \in \{1, ..n\}$ for $i \in X$ in descending order of w_i do $x_i = 0 \quad \forall i \in \{1, ..n\}$ // Reset solution $x_i = dSearch(i)$ // Find maximum amount of trains to add for $j \in X$ in descending order by w do $| if j \neq i$ then $| x_j = dSearch(j)|$ end $X^* = max(obj_val(X), obj_val(X^*))$ // Set best solution end return X^*

Case

• Mesoscopic network (feasibility by microscopic input data)

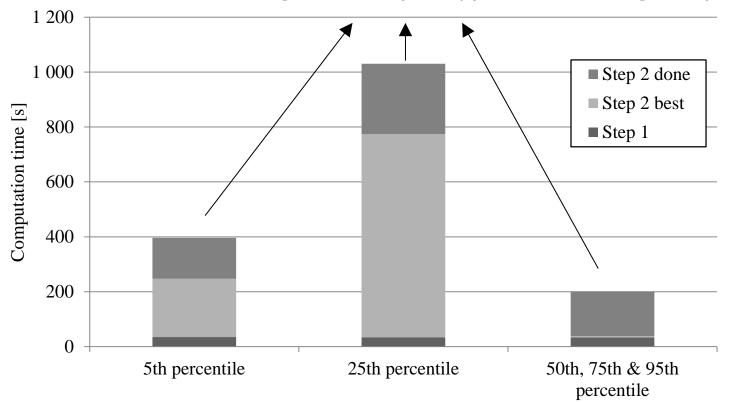


16 **DTU Transport, Technical University of Denmark**

CASPT 20/07/2015

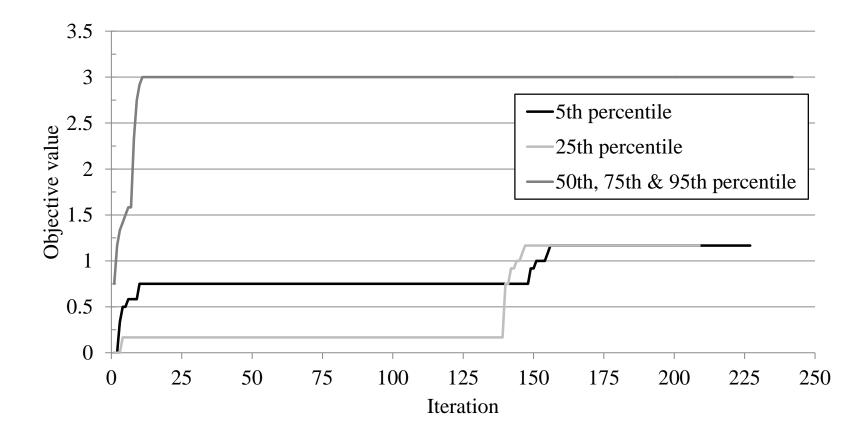
Results

- Computational results for step 1 and 2:
 - Win 7 desktop w/ Intel Core i7-2600 (3.4 GHz) CPU and 8 GB RAM Increased running time of C(X+Y,p) due to heterogeneity



Results

• Computational results for step 2



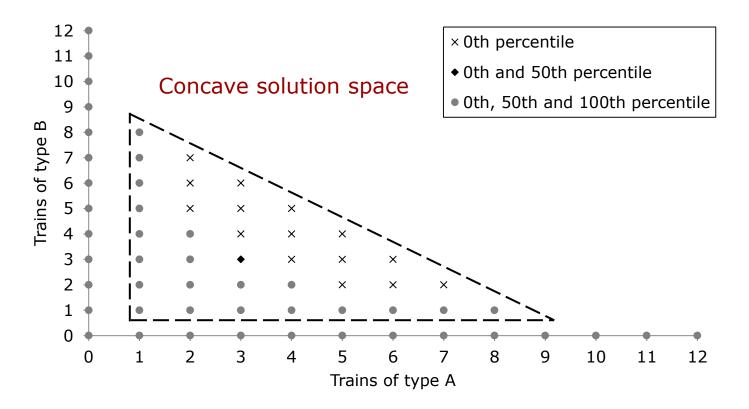
Results

• Results for case

C_{max}	75%	90%	90%	90%	100%	100%	100%
Percentiles	5-95th	50-95th	25th	5th	75-95th	50th	5-25th
Mix scheduled			•	•		•	•
Train type	Number of trains (extra trains added in step 2)						
1	0	0	1	2(1)	0	1	2(1)
2	0	0	1	1	0	1	1
3	0	0	1	1	0	1	1
4	0	0	1	1	0	1	1
5	0	0	1	1	0	1	1
6	0	0	1	1	0	1	1
7	0	0	1	1	0	1	1
8	0	0	1	1	0	1	1
9	0	0	16(14)	2	0	18(16)	2
10	0	0	2	2	0	2	2
11	16(16)	19(19)	2	9(7)	22(22)	2	11 (9)
12	18(18)	21(21)	2	5(3)	24(24)	2	7(5)
Mix - objective	0 - 5.2	0 - 6.2	1 - 0.5	1 - 1.7	0 - 7.1	1 - 0.6	1 - 2.3

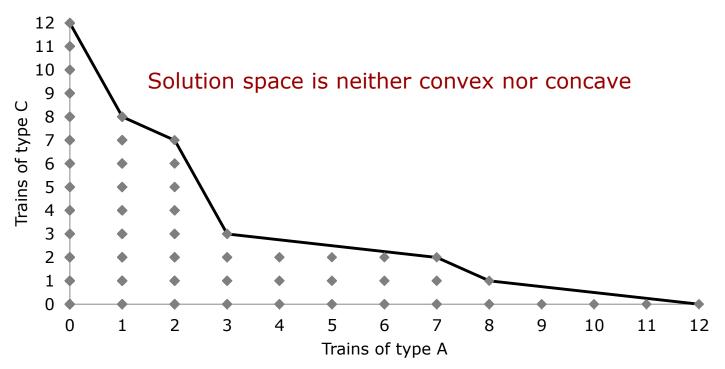
Solution space

- Does the greedy heuristic finds the optimal solution?
 - In some cases yes:



Solution space

- Does the greedy heuristic finds the optimal solution?
 - In some cases yes:
 - And in some cases no:



Conclusions

- Proposed framework determines the number of times a certain mix of train can be scheduled plus additional trains that saturate the mix solution using predefined train type weights
- The framework is able to give a span of capacity in networks with heterogeneous operation
- For the case considered
 - Capacity estimated in \sim 3 minutes (in most test instances), but in some instances up to \sim 20 minutes
- In step 2, as many trains as possible is added of one single type
 - Not desirable as solutions might contain a very high proportion of one train type
- Greedy heuristic does not guarantee optimal solutions

Further work

- Other solutions methods for the mathematical model (step 2)
 - Use metaheuristics to obtain better solutions
- Alternative/extended formulation of the mathematical model
 - To ensure more diversity in train types added in step 2 (not only one type)
 - To ensure directional symmetry
- Use stochastic capacity consumption model instead of deterministic
 - Will capture the aspect of robustness better and thus provide better capacity results
 - Requires some improvements in calculation time

Thank you for your attention!

Lars Wittrup Jensen Department of Transport Technical University of Denmark <u>lawj@transport.dtu.dk</u>