Duty Rostering in Public Transport

Facing Preferences, Fairness, and Fatigue ¹

Ralf Borndörfer Markus Reuther Thomas Schlechte **Christof Schulz** Elmar Swarat Steffen Weider

> Conference on Advanced Systems in Public Transport (CASPT 2015) Session 5B: Crew Rostering

> > Rotterdam, 21.07.2015

 $^{^{1}}$ This work was funded by the Federal Office for Goods Transport (BAG) and by LBW GbR.

Assigning duties to employees obeying certain rules.

Objectives

- Minimize costs
- Create employee-friendly and fair rosters

- Certain planning period or idealized days of operation
- Personalized or anonymous
- Cyclic or acyclic
- Days off planned in advance or as part of the optimization

Planning process:

- Important step in several industries (healthcare, public transport, railway, airline, ...)
- Sequential after duty scheduling
- Integrated with duty scheduling

Hard Rules

- Come from law or collective agreements
- Must not be violated
- Examples: Weekly Rest Time

	Weekly Rest Time	
In any 2	consecutive weeks the driver must	į
Tak	e at least:	ł
Or	2 regular rest periods (of at least 45 hours)	ł
	1 regular rest period and 1 reduced rest period (of at least 24 hours)	ļ
		ļ

Soft Rules

- Violation is penalized by costs
- Can be used to compute employee-friendly rosters
- Example: Maximize number of complete free weekends

Multi-Commodity Flow

Set Partitioning

Multi-Commodity Flow Model

- A duty is a node in a graph
- Arc (i, j) means, duties i and j can be performed subsequently by the same employee
- One commodity per employee
- Additional resource constraints

Flow Model more effective

- Many feasible paths
- Only a few hard rules

Multi-Commodity Flow Model

- D: Set of duties
- ► M: Set of rows.
- ► *I*: Set of set of arcs
- I: Subset of all arcs.

- Graph G: One node per duty plus s and t as source and sink.
- ► A: Set of arcs of G.
- R: Set of resources.

Set Partitioning Model

- One variable per roster
- Rosters must be generated
- Only feasible rosters are generated
- Infeasible rosters are not part of the model

Set Partitioning Model more effective when

Many hard rules

- ► D: Set of duties.
- ▶ *P*: Set of rows.

$$\begin{split} \min \sum_{p \in P} d_p y_p & (\text{CROSTER}) \\ \sum_{p \ni d} y_p = 1, & \forall d \in D, \quad \text{every duty is covered by one row} \\ \sum_{p \in P} e_{rp} y_p \leq u_r, & \forall r \in R, \quad \text{Resource constraints} \\ y_p \in \{0, 1\}, \quad \forall p \in P. \end{split}$$

DEX-Heuristic for Rostering Problems

Problem Cannot solve big instances directly in an acceptable time.

DEX (Dynamic-depth-EXchange heuristic)

- Multi-phase-heuristic for rostering
- Steps:
 - 1. Construct a roster scheme
 - 2. Chain k-opt moves with $k \in 1, ..., 4$ to large alternating cycles, i.e., Lin-Kernighan search

Three Edge Exchange

- S_b : Best solution.
- ► *S*_t: Temporary solution.

- Start solution with greedy heuristic
- Improve solution with k-opt steps

- Variable depth search
- *i*-Three edge exchanges correspond to a 2 * (i 1) + 3 edge exchange

Rostering Applications at Zuse-Institute Berlin

- Rostering in Toll Enforcement.
- Cyclic rostering in public transport.
- Airline Crew Rostering.

Rostering Application -Toll Enforcement

Toll for Trucks on German Motorways

- Distance-based toll for trucks on German motorways.
- ▶ Rates per kilometre differ between 0.12 0.22 EUR/km.
- ► On-Board-Units (OBU) recognize a toll road by GPS on their own.
- Trucks without OBUs require manual toll booking.

Problem Input

- Personalized data
- Resources

Problem Output

Schedules for all mobile control teams

Two parts

- Tour Planning / duty scheduling
- Crew assignment / rostering

Optimisation Goals

- Network-wide control
- Consider spatial and temporal distribution of truck traffic

- Extend (FRoster) with tour planning
- ► J: Set of days
- ► *F*: Set of control groups.
- ▶ $z_d, d \in D$: Decide if a control tour d is chosen or not.

(Coupling Constraints)

$$n_d z_d - \sum_{m \in M} \sum_{a \in \delta^{in}(d) \in A} x_{am} = 0, \, \forall d \in D$$

$$\begin{split} (\mathsf{FRoster}) & \sum_{a \in \delta^{\mathrm{ss}}(v)} x_{am} - \sum_{a \in \delta^{\mathrm{ss}}(v)} x_{am} = 0, \qquad \forall m \in M, \forall d \in D, \\ & \sum_{a \in A} b_{ar} x_{am} \leq u_{rm}, \qquad \forall m \in M, \forall r \in R \\ & \sum_{a \in I} x_{am} \leq |I| - 1, \ \forall I \in \mathcal{I}, \forall m \in M \\ & \quad x_{am} \in \{0, 1\}, \quad \forall a \in A, \forall m \in M, \end{split}$$

Rostering Application -Cyclic Rostering in public transport

Cyclic Rostering

- ► To receive equitable rosters, the duties are scheduled cyclically
- Every employee conducts the same duties
- Transparent for Trade Unions

Problem Input

- Duties
- Rostering rules

Optimisation Goals

- Minimize number of rows
- Reach a uniform distribution of paid time
- Fair distribution of unpopular duties (e.g. split duties, night duties)
- Other criteria of fairness

Problem Output

Cyclic roster

- Extend (CRoster) with ATSP Constraints
- ▶ $y_{rs}r, s \in P$: Variables for successors and predecessors.

(Objective)					
	min $\sum_{p \in P} c_p x_p +$	$-\sum_{r,s\in P} d_{rs} y_{rs}$			
(ATSP)					
$\sum y_{rs} = x_r$		$\forall r \in P$ (one successor)	(CRoster)	_	
$\sum_{s \in P} y_{sr} = x_r$		$\forall r \in P$ (one predecessor)		$\sum_{p \ni d} x_p = 1$	$\forall d \in I$
$\sum_{s \in P} y_{rs} \ge x_p$	$+x_q-1 \forall p \notin S, q \in$	$S, S \subset P($ subtour elimination $)$		$\sum_{r\in\sigma_i}b_{ri}x_r\in[l_i,u_i]$	$\forall \sigma_i \in S_i, i \in$
$r \notin \overline{S, s \in S}$ $v_{rs} \in \{0, 1\}$		$\forall r. s \in P$		$x_p \in \{0,1\}$	$\forall p \in I$

Rostering Application -Airline Crew Rostering

Biorhythm of crew members

- During sleep one recovers
- Staying awake makes one tired
- Working makes one tired even faster
- No one can sleep on command

Maximum fatigue rules

- Complex non linear function
- Taking time zones into account

time

Medium urban scenario

- ▶ 157 duties
- Target working time 39 hours per week
- Regular weekly rest time of 45 hours
- Short weekly rest time of 36 hours

Optimisation Goals

- Working time per week as close to 39 hours as possible
- Minimize the number of short weekly rests
- Maximize the number of free weekends (Saturday and Sunday free)
- Minimize the number of stand alone duties (Free Duty Free)

Aspect	Manual solution	DEX
Employees	39	39
PT/Week (optimal 39:00)	[37:56,40:11]	[38:45,40:05]
Separated weekend duties	12	9
Free weekends	12	16
Stand-alone duties	0	0
Number of short frees	13	6
Runtime (hh:mm)	-	00:22

Results

- Working time per week is closer to 39 hours
- Number of short frees decreases from 13 to 6
- ▶ Free weekends increases from 12 to 16

- Nine scenarios from seven regions
- Regions are optimized separately at BAG

				Fixed	Duty	IP	
Instance	Region	Inspectors	Sections	Duties	Types	Rows	Columns
l1	<i>r</i> ₁	21	17	253	6	7738	96526
12	<i>r</i> ₁	22	22	272	4	8010	101791
13	<i>r</i> ₁	22	22	170	7	13095	392563
14	<i>r</i> ₂	23	24	189	8	15417	402285
15	<i>r</i> ₃	22	22	8	12	20366	1611980
16	<i>r</i> ₄	19	17	177	8	11246	295388
17	<i>r</i> 5	23	19	182	9	15067	501340
18	<i>r</i> ₆	24	28	57	8	15246	712228
19	r 7	21	16	0	10	17369	904878

► TEP is directly solvable by a solver such as CPLEX

Algorithm

- Enumerate all possible tours
- Start the DEX heuristic

CPLEX settings

- ▶ Time limit of five minutes to compare results with DEX
- ▶ Time limit of 12 hours to check if CPLEX finds better or optimal solutions

Results

- \blacktriangleright For instances I1, I2 and I6 the IP method outperforms DEX
- > All others have no feasible solution within five minutes
- $\blacktriangleright\ \mathrm{DEX}$ always finds a feasible solution
- DEX is the first choice for medium-size and large instances

IP				DEX			
instance	obj 5 min	obj 12 hours	gap(%)	obj	time(s)	gap(%)	
11	359,077.13	359,077.13	0.00	353,181.93	36	1.67	
12	332,283.74	332,556.68	0.00	326,612.72	82	1.82	
13	-	513,998.85	0.00	499,804.91	127	2.84	
14	-	346,788.20	0.88	340,130.17	179	2.85	
15	-	805,294.03	1.08	790,459.06	420	2.98	
16	154,142.04	154,270.86	0.03	151,769.96	151	1.68	
17	-	335,015.01	0.72	331,301.40	162	1.85	
18	-	373,509.57	85.84	671,729.68	415	3.33	
19	-	437,426.84	4.76	441,274.11	474	3.85	

Thank you for your attention!

Christof Schulz

Dres. Löbel, Borndörfer & Weider GbR

Dr. Andreas Löbel Prof. Dr. Ralf Borndörfer Dr. Steffen Weider Obwaldener Zeile 19, 12205 Berlin www.lbw.berlin

 Zuse Institute Berlin (ZIB) Takustr. 7, 14195 Berlin www.zib.de

