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Introduction 
• A typical smart card automated fare collection system for 

public transit collects millions of transactions each day 
•  These systems are made for revenue collection, 

however they can be used to identify « card » behaviour 
for transport planning purposes (à strict privacy is kept) 

• However, to analyze the temporal behaviour of cards, 
advanced data mining technique must be used because: 
•  The number of observations is too large 
•  Classical distance-based techniques are not always suitable to 

clusterize temporal information 

•  In this project, we propose a new method of distance 
calculation + a solving technique  
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Background 
Smart card in public transit 
•  Through the years, the usefulness of smart card data for 

public transit planning has been demonstrated: 
•  for ridership and turnover studies 
•  for behaviour detection using classical data mining techniques 
•  to identify destinations and create OD matrices 
•  to evaluate travel time in subway systems 
•  to examine the impact of weather on transit usage 
•  to assess the loyalty of users 
•  to calculate KPIs on demand and supply 

• Many DM techniques were used on smart card data:  
classical k-means, DBScan, mixture of Gaussian 
distribution, etc. 
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Background 
Some examples of SC data analysis 

July 2015 CASPT 2015 Rotterdam 5 

Schedule adherence on route 37 

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0

Minutes 

%
 o

bs
er

va
tio

ns

Inbound

Learning of the bus network Schedule adherence 

Card « survival » 



Methodology 
Clustering method: AHC 
•  In our case study, because there are more than 400,000 

observations, we cannot use a classical k-means in a 
reasonable computer calculation time (600 Gb memory needed!) 

• We propose to use a model-based approach, a modified 
Agglomerative Hierarchical Clustering (AHC) 
•  We start with a classical k-means with 1000 randomly selected 

observations and consequently merges the rest with the closest 
cluster centers to end up with all data in clusters 

•  The nested groups generated using a hierarchical clustering 
algorithm of data, are visualized through a dendrogram that shows 
the « distances » between observations 

•  We use the dendogram to « cut » the observations into clusters 
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Methodology 
Distance calculation 
• When looking at temporal distribution of transactions, 

distance calculation between vectors is an issue 
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Methodology 
SCP method for distance 
•  To make results acceptable to transit planners, we 

propose to use a Semi-Circle Projection (SCP) of the 
vectors before calculating distances 
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Methodology 
Distance calculation 
•  d 
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Methodology 
Cluster identification 
•  The number of clusters to be found is still an open 

research question; it depends on the level of resolution 
needed, we try to obtain equilibrated clusters 
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Results 
Case study 
• Société de transport de l’Outaouais, a mid-size authority 

(300 buses & 220,000 inhabitants) 

• One month period (April 2009) 
•  26,176 cards 
•  753,016 transactions 
•  416,076 card-days 
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Results 
Dendogram 
•  18 clusters were identified 
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Results 
18 clusters 
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Results 
Cluster characterization 
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Results 
Cluster mapping 
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Results: cluster distribution 
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Results 
Cluster distribution over the month 
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Results :  Cluster distribution by average day 
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Results 
Frequency of cards in cluster 
• Clusters are made on card-days, so a card can be 

assigned up to 30 times to the same cluster in April 2009 
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Conclusion 
• Smart card data is a plentiful source of travel 

behaviour knowledge of public transit users 
• Number of observations explodes, so it is difficult to 

apply classical data mining techniques, we must find a 
way to tweak the existing methods 

• Having a good distance metric is the key 
• Once applied, the techniques help to better understand 

the type and the frequency of behaviours among cards 
Perspectives 
• Process more data 
•  Integrate the spatial location of boarding, not only 

temporality 
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