IDENTIFYING TEMPORAL USER BEHAVIOR THROUGH SMART CARD DATA

Mohammad Sajjad Ghaemi^{1,2}, Doctorate student Bruno Agard^{1,3}, Professor Vahid Partovi-Nia^{1,2}, Professor Martin Trépanier^{1,3}, Professor

Interuniversity Research Center on Entreprise Networks, Logistics and Transportation

In this presentation

Introduction

• Why using data mining for smart card data?

Background

Smart card data in public transport planning

Methodology

- Agglomerative Hierarchical Clustering
- Distance calculation
- Cluster identification

Results

- Case study
- Cluster definition
- Descriptive analysis

Conclusion

Introduction

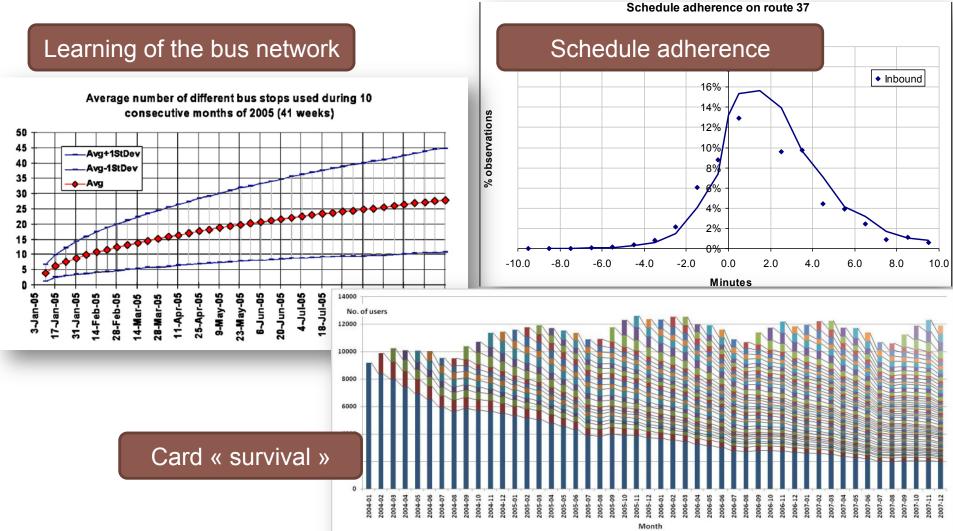
- A typical smart card automated fare collection system for public transit collects millions of transactions each day
- These systems are made for revenue collection, however they can be used to identify « card » behaviour for transport planning purposes (→ strict privacy is kept)
- However, to analyze the temporal behaviour of cards, advanced data mining technique must be used because:
 - The number of observations is too large
 - Classical distance-based techniques are not always suitable to clusterize temporal information
- In this project, we propose a new method of distance calculation + a solving technique

Background

Smart card in public transit

- Through the years, the usefulness of smart card data for public transit planning has been demonstrated:
 - for ridership and turnover studies
 - for behaviour detection using classical data mining techniques
 - to identify destinations and create OD matrices
 - to evaluate travel time in subway systems
 - to examine the **impact of weather** on transit usage
 - to assess the loyalty of users
 - to calculate KPIs on demand and supply
- Many DM techniques were used on smart card data: classical k-means, DBScan, mixture of Gaussian distribution, etc.

Background Some examples of SC data analysis



Methodology Clustering method: AHC

- In our case study, because there are more than 400,000 observations, we cannot use a classical k-means in a reasonable computer calculation time (600 Gb memory needed!)
- We propose to use a model-based approach, a modified Agglomerative Hierarchical Clustering (AHC)
 - We start with a classical k-means with **1000 randomly selected observations** and consequently merges the rest with the closest cluster centers to end up with all data in clusters
 - The nested groups generated using a hierarchical clustering algorithm of data, are visualized through a dendrogram that shows the « distances » between observations
 - We use the dendogram to « **cut** » the observations into clusters

Methodology Distance calculation

 When looking at temporal distribution of transactions, distance calculation between vectors is an issue

Card-days	H1	H2	H3	H4	H5	H6	H7
1	1	0	0	0	0	0	0
2	0	1	0	0	0	0	0
3	0	0	1	0	0	0	0
4	0	0	0	1	0	0	0
5	0	0	0	0	0	1	0
6	0	0	0	0	0	0	1
7	1	1	0	0	0	0	0
8	1	0	1	0	0	0	0
9	1	1	1	0	0	0	0
10	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0
12	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1

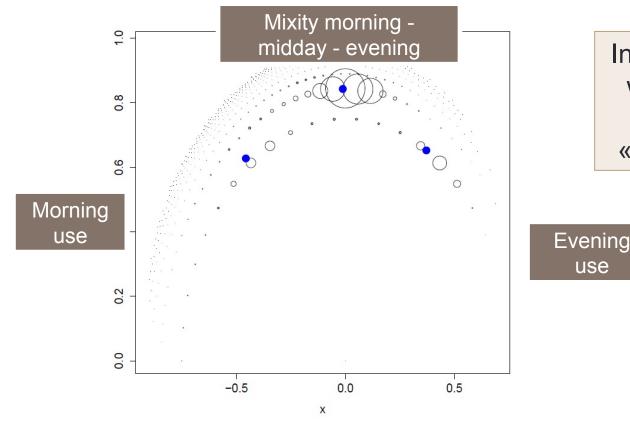
Hours of the day

Distance	Euclidean	Manhattan		
D(1,2)	$\sqrt{2}$	2		
D(1,3)	$\sqrt{2}$	2		
D(7,8)	1	1		
D(7,9)	1	1		

From a « transportation » point of view, D(1,2) should be smaller than D(1,3)!

Methodology SCP method for distance

 To make results acceptable to transit planners, we propose to use a **Semi-Circle Projection** (SCP) of the vectors before calculating distances

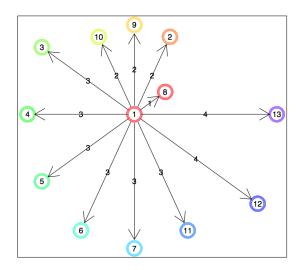


In this projection, users with similar temporal behaviour will be « near » to each other

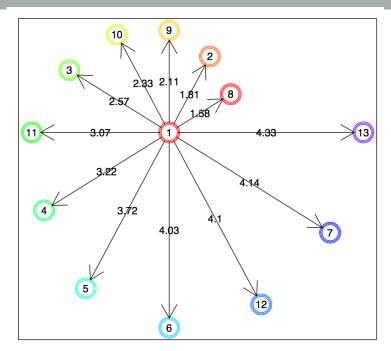
use

Methodology Distance calculation

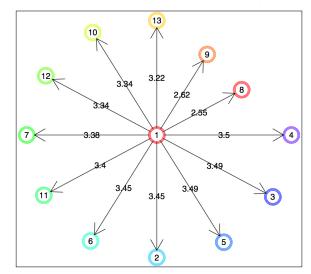
User	H_1	H_2	H_3	H_4	H_5	H_6	H_7
X_1	1	0	0	0	0	0	0
X_2	0	1	0	0	0	0	0
X_3	0	0	1	0	0	0	0
X_4	0	0	0	1	0	0	0
X_5	0	0	0	0	1	0	0
X_6	0	0	0	0	0	1	0
X_7	0	0	0	0	0	0	1
X_8	1	1	0	0	0	0	0
X_9	1	0	1	0	0	0	0
X_{10}	0	1	1	0	0	0	0
X ₁₁	1	0	0	1	0	0	0
X_{12}	0	0	0	0	1	1	0
X_{13}	0	0	0	0	0	1	1



(a) Autocorrelation distance



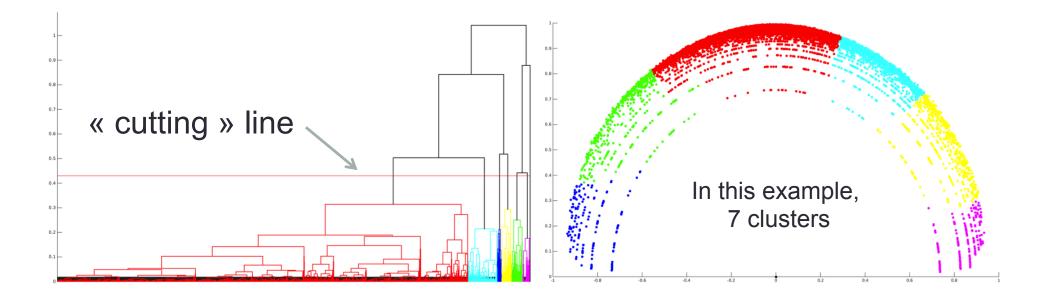
(b) SCP distance



(c) Cross-correlation distance

Methodology Cluster identification

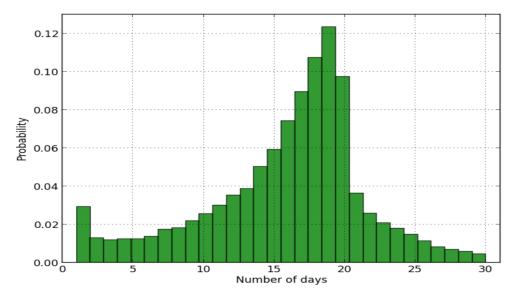
 The number of clusters to be found is still an open research question; it depends on the level of resolution needed, we try to obtain equilibrated clusters



Results

Case study

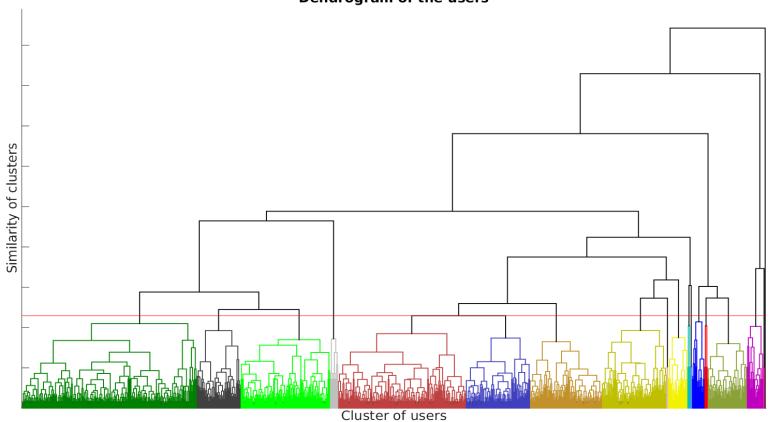
- Société de transport de l'Outaouais, a mid-size authority (300 buses & 220,000 inhabitants)
- One month period (April 2009)
- 26,176 cards
- 753,016 transactions
- 416,076 card-days



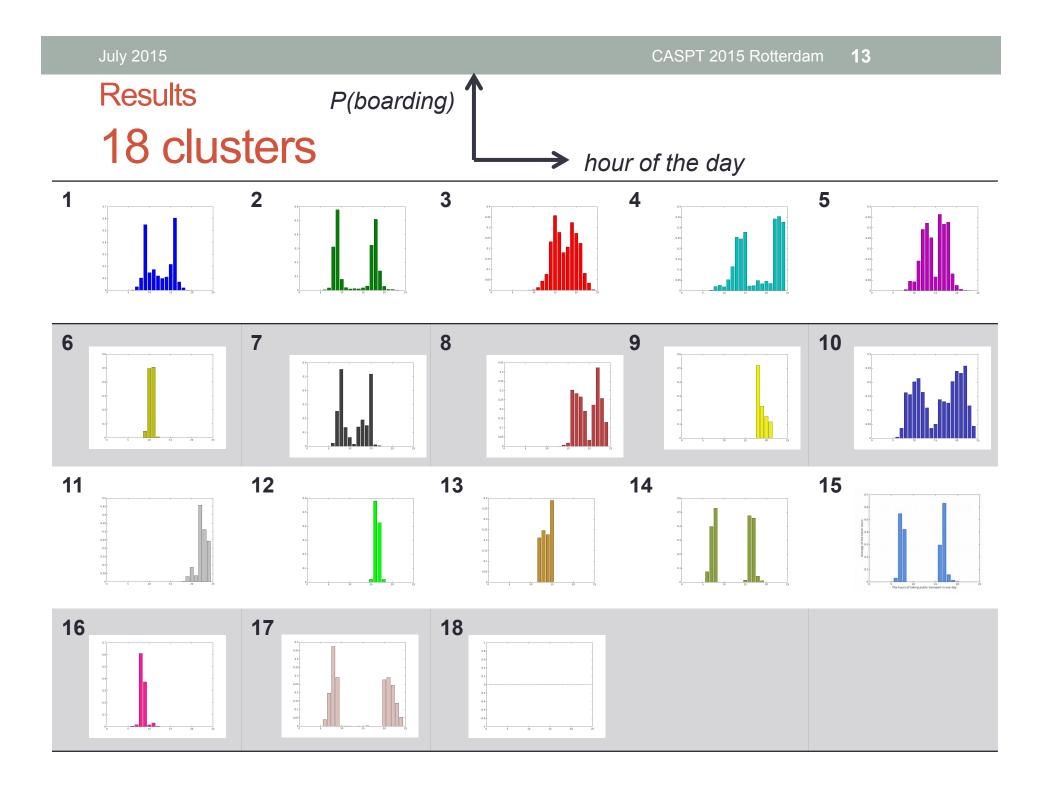
Most users (cards) travel 19 days per month

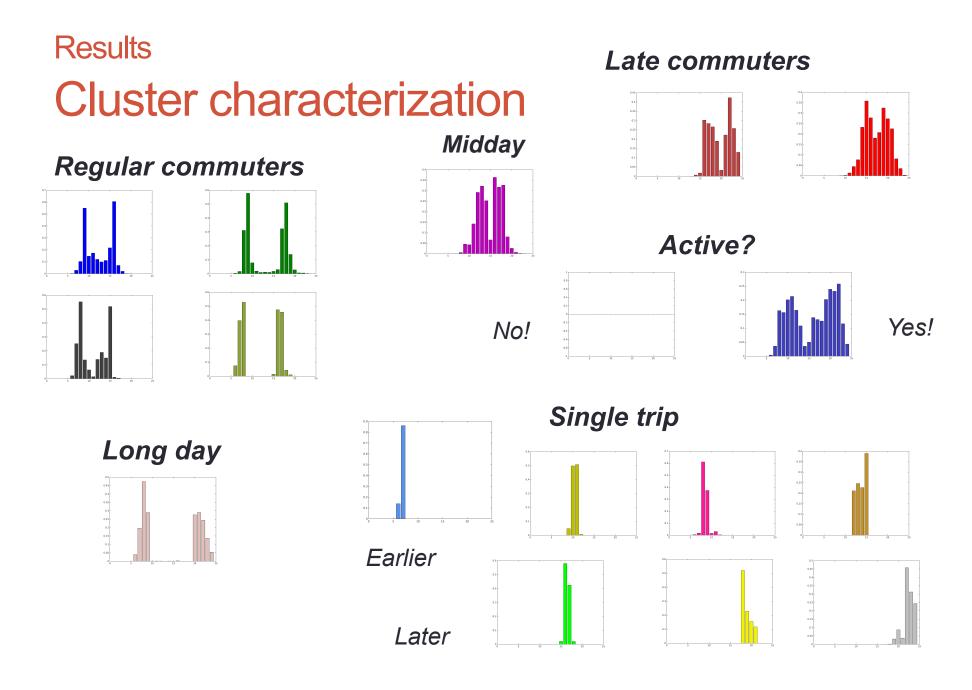
Results Dendogram

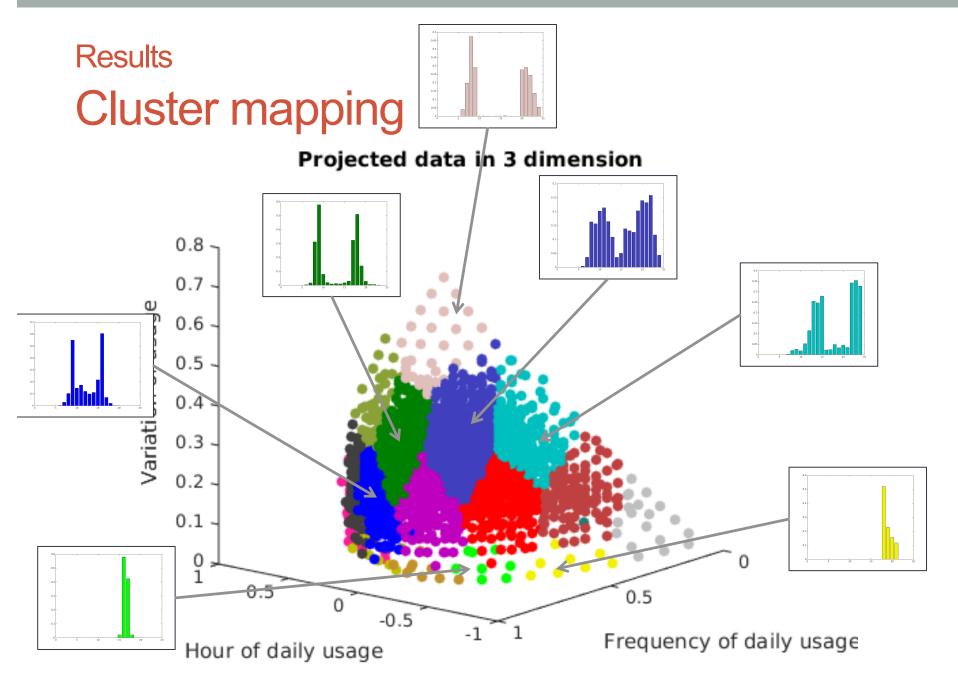
• 18 clusters were identified

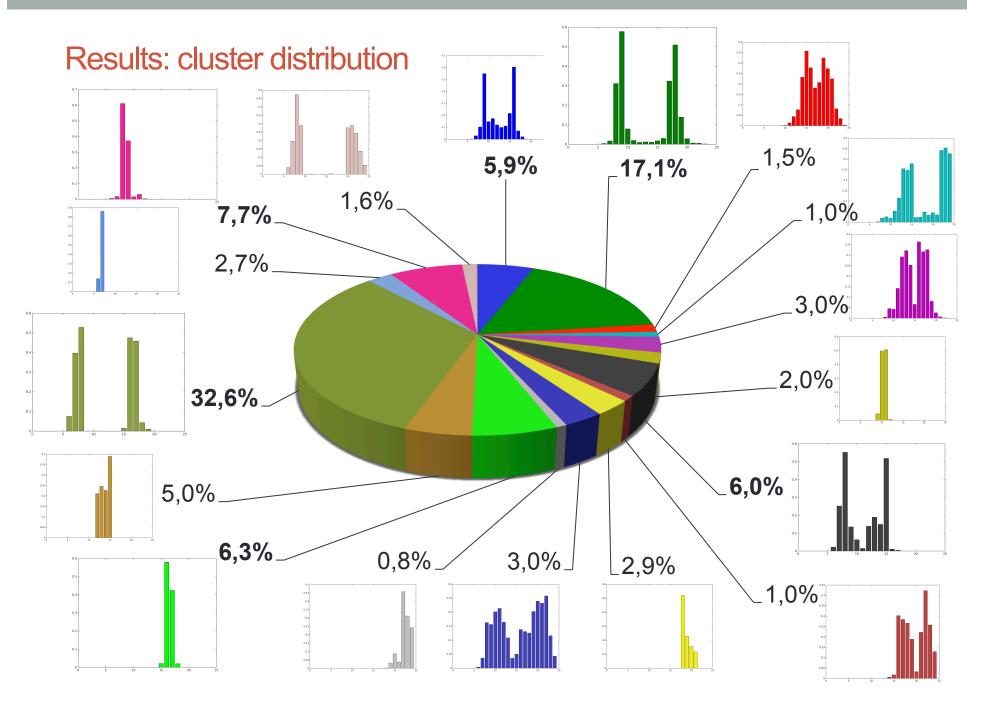


Dendrogram of the users

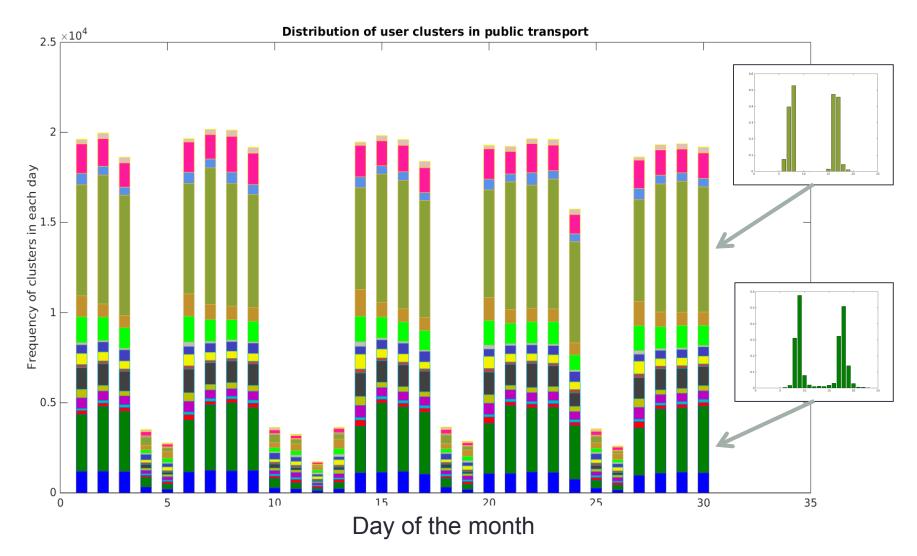






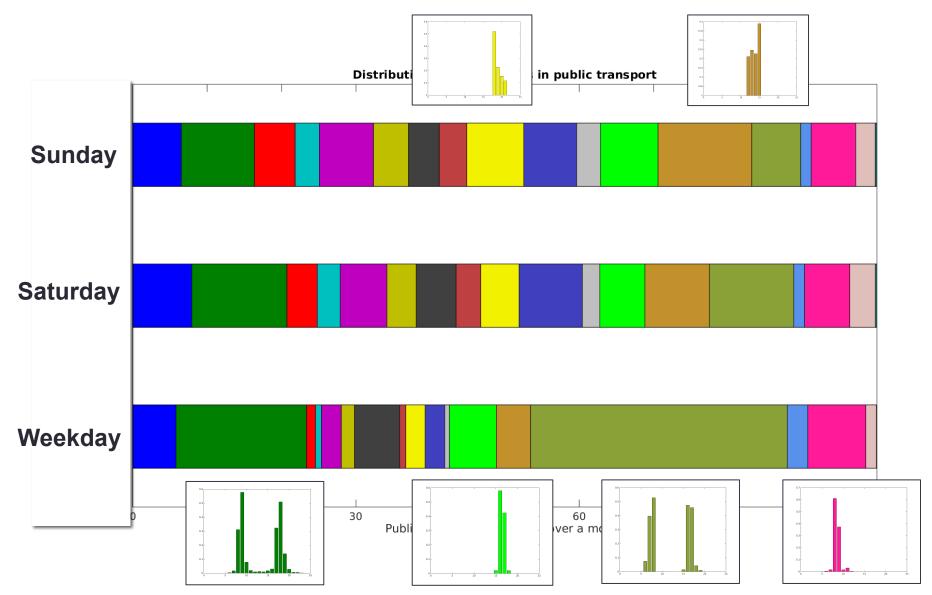


Results Cluster distribution over the month



July 2015

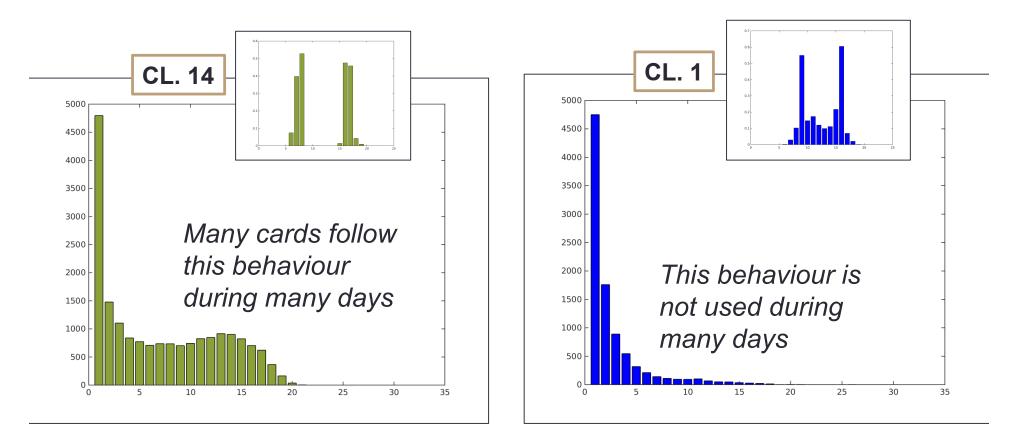
Results : Cluster distribution by average day



Results

Frequency of cards in cluster

 Clusters are made on card-days, so a card can be assigned up to 30 times to the same cluster in April 2009



Conclusion

- Smart card data is a plentiful source of travel behaviour knowledge of public transit users
- Number of observations explodes, so it is difficult to apply classical data mining techniques, we must find a way to tweak the existing methods
- Having a good distance metric is the key
- Once applied, the techniques help to better understand the type and the frequency of behaviours among cards

Perspectives

- Process more data
- Integrate the spatial location of boarding, not only temporality

Acknowledgements

THALES

