Real-time High Speed Train Rescheduling in Case of A Partial Segment Blockage

Shuguang Zhan

PhD candidate Southwest Jiaotong University, China

15 July 2015, Rotterdam

Outline

- 1 introduction
- 2 Problem description
- 3 Model formulation
- 4 Rolling horizon approach

🔇 1 of 24 🕥

- 5 Experimental setting
- 6 Experimental results
- 7 Conclusion

Rotterdam July 22

CASPT2015

Introduction Research Significance

- External and internal factors
- Few previous research

Manually Train rescheduling is mainly done by dispatchers

 Practical significance
 Real-time train rescheduling is very important in helping dispatchers to reschedule trains

CASPT2015

Rotterdam July 22

of 24 🔊

S S

Introduction Research content

This paper focuses on high speed train rescheduling on a long high speed line with a dense traffic in a partial segment blockage.

The main contributions are as follow:

- Reschedule trains on a long high speed line with a dense traffic and a non-periodic timetable.
- Various types of trains and trains with different stopping patterns.
- > Trains are allowed to arrive earlier than scheduled.
- No anticipation on the occurrence and the duration of the disruption is priori unknown.

CASPT2015 Rotterdam July 22

Problem description

track layout and train types

Fig.1 Track layout and various types of trains

24

of

Problem description

Fig. 2 A disposition timetable in a partial blockage for small instance

CASPT2015 Rotterdam July 22

5 of 24 >

Model formulation

Assumptions:

- Each track of the double-track lines is a bidirectional line in the perspective of technology.
- Both tracks of the main line is connected with each siding in each station
- Upside (downside) trains are only allowed to use upside (downside) sidings.
- > Trains run as scheduled before the disruption.
- Trains can continue their journeys if they have already entered the disrupted segment at the start of the disruption.

6

CASPT2015 Rotterdam July 22

Model formulation Basic model

Objective:

min: train cancelation penalty + total weighted train deviation (earliness and tardiness)

Min:
$$\sum_{t \in T} \gamma_t y_t + \sum_{e \in E} \mu_e^+ d_e^+ + \sum_{e \in E^{arr}} \mu_e^- d_e^-$$

Rotterdam July 22

Subject to: (1) The domain of events (move canceled trains) $2M_1y_{t_e} - M_1 \le x_e - q_e \le M_1 \quad \forall e \in E, t_e \in T$

7 of 24 🕥

CASPT201<u>5</u>

Model formulation Basic model

Subject to:

(2) trains cannot depart earlier $x_e \ge q_e \quad \forall e \in E^{dep}$ (3) deviation of train events $d_e^+ \ge x_e - q_e - M_1 y_{t_e} \quad \forall e \in E, t_e \in T$ $d_e^- \ge q_e - x_e \quad \forall e \in E^{arr}$ (4) deviation of train events connet of

(4) deviation of train events cannot exceed maximum deviation

$$d_e^- \le D \qquad \forall e \in E^{art}$$
$$d_e^+ \le D \qquad \forall e \in E$$

Rotterdam July 22

CASPT2015

Model formulation Basic model

Rotterdam July 22

Subject to:

(5) run as scheduled before disruption $x_e = q_e \quad \forall e \in E : q_e \leq H_{dis}^{start}$ (6) running train cannot be canceled $y_{t_e} = 0 \quad \forall t_e \in T, e \in E_{s_{t_e}^{dep}}^{dep} : q_e \leq H_{dis}^{start}$ (7) the domain of variables $y_t \in \{0,1\} \quad \forall t \in T$ $x_e, d_e^+, d_e^- \geq 0 \quad \forall e \in E$

CASPT2015

9 of 24 📀

Single train precedence constraints

Fig. 3 Single train running graph

10 of 24 >

$$x_f - x_e \ge L_a \quad \forall a = (e, f) \in A_{train}$$

Rotterdam July 22

CASPT2015

Headway constraints between trains

Fig. 4 Headway between trains in the same direction

$$\lambda_{a} + \lambda_{a'} = 1 \quad \forall a = (e, f) \in A_{head}^{track, 1} \land a' = (f, e) \in A_{head}^{track, 1}$$
$$x_{f} - x_{e} + M_{2}(1 - \lambda_{a}) \ge L_{a} \quad \forall a = (e, f) \in A_{head}^{track, 1}$$

11 of 24

CASPT2015 Rotterdam July 22

>Overtaking constraints

Fig. 5 Overtaking between trains

12 of 24

Note: Only trains in the same direction may overtake each other

$$\lambda_a = \lambda_{a'} \quad \forall (a, a') \in B$$

CASPT2015 Rotterdam July 22

Headway constraints between trains (opposite direction)

Fig. 6 Headway between trains in opposite directions

Which disrupted train needs to run on the reverse track in the blocked segment is related to the train rescheduling results. (Fig.6: upside track is blocked)

CASPT2015 Rotterdam July 22

13 of 24 📀

Headway constraints between trains(opposite direction)
Define binary variable:

 $\chi_e^d = \begin{cases} 1 & \text{if train } t_e \text{ departs from station } s_e \text{ before the disruption ends} \\ 0 & \text{otherwise} \end{cases}$

$$\begin{split} H_{dis}^{end} \times (1 - \chi_e^d) < x_e &\leq H_{dis}^{end} + (1 - \chi_e^d) \times M_2 \\ x_f - x_e + M_2 (1 - \lambda_a) + M_2 (1 - \chi_{e_1}^d) \geq L_a \qquad \forall a = (e, f) \in A_{\text{head}}^{track, 2} \end{split}$$

The domains of events differ due to different disruption scenarios and types of trains, show as follow:

Headway constraints between trains(opposite direction)

(1) Headway between upside departure-downside arrival

(3) Headway between downside departure-upside arrival

Rotterdam July 22

(2) Headway between downside departure-upside arrival

(4) Headway between upside departure-downside arrival

Fig. 7 Headway between trains in opposite directions

15 of 24

 t_1

Station capacity constraints

Fig. 8 Graph for trains running in a station Define binary variable:

$$\begin{split} \varphi_{a} = \begin{cases} 1 & \text{if train } t_{e} \text{ departs from station } s \text{ before train } t_{f} \text{ arrives there} \\ 0 & \text{otherwise} \end{cases} \\ \sum_{a=(e,f)\in A_{s,f}^{1}} \lambda_{a} - \sum_{a=(e,f)\in A_{s,f}^{2}} \varphi_{a} \leq C_{s}^{down} - 1 \quad \forall s \in S^{m}, \ f \in E_{s}^{arr} : q_{f} \geq H_{dis}^{start} \wedge t_{f} \in T^{down} \\ \sum_{a=(e,f)\in A_{s,f}^{1}} \lambda_{a} - \sum_{a=(e,f)\in A_{s,f}^{2}} \varphi_{a} \leq C_{s}^{up} - 1 \quad \forall s \in S^{m}, \ f \in E_{s}^{arr} : q_{f} \geq H_{dis}^{start} \wedge t_{f} \in T^{up} \\ X_{f} - X_{e} + M_{2} \left(1 - \varphi_{a}\right) \geq L_{a} \quad \forall a = (e, f) \in A_{station} \end{cases}$$

CASPT2015 Rotterdam July 22 S 16 of 24 >

 S_1

 S_2

Train balance constraints

Rotterdam July 22

CASPT2015

The number of canceled trains of the same type in each direction should be more or less equal.

$$\sum_{t \in p} y_t - \sum_{t \in p'} y_t \le \delta \quad \forall t \in T$$
$$\sum_{t \in p'} y_t - \sum_{t \in p} y_t \le \delta \quad \forall t \in T$$

17 of 24 🕥

Rolling horizon approach

Real-time train rescheduling is complicated:

- Long high speed line
- Large number of trains
- Limited computation time

Rotterdam July 22

Fig. 9 Rolling horizon framework

 $\boldsymbol{<}$

18 of 24

CASPT2015

Experiment setting

The Beijing-Shanghai high speed railway and other related high speed railways.

90 upside and 90 downside trains

CASPT2015 Rotterdam July 22

19 of 24

ransportation and Logistics, Southwes

Experiment setting

Tab. 1 Assumed disruption scenarios

Scenarios	Occurrence time	Location	duration	Disrupted track		
1	10:00	5	60/90/120	Downside track		
2	13:00	11	60/90/120	Upside track		
3	13:00	11	60/90/120	Downside track		
4	17:00	16	60/90/120	Upside track		
Tab. 2 Disruption instances with updating information						
Instances	Scenarios	Duration time updates				
1	1	{10:00, H ₁	10:00-11:30}, {11	:00, H _{10:00-12:00} }		
2	2	{13:00, H ₁	13:00-14:00}, {13	:30, H _{13:00-15:00} }		
3	3	$\{13:00, H_{13:00-14:30}\}, \{14:00, H_{13:00-15:00}\}$				
4	4	{17:00, H ₁	:30, H _{17:00-19:00} }			
	Rotterdam July 22	20 of 24 2	「「「「「「」」 「「」」 「「」」 「」」 「」 「」」 「」」 「」」 「	在 <i>生 堂</i> 交通运输与物流学院		

School of Transportation and Logistics, Southwest Jiaotong University

Experiment results

$Instance^*$	$\begin{array}{c} \text{horizon} \\ (\min) \end{array}$	Obj.	TD (min)	Cancel	Time(s)	$\operatorname{Gap}(\%)$	Recover
$(10, 5, 60)^2$	180	3562	928	0	70	0	
	690	231	953	0	88	0	13:07
$(10, 5, 90)^2$	180	5353	1377	0	245	0	
	690	1081	1540	0	75	0	13:56
$(10, 5, 120)^2$	130	5674	1485	0	300	13.99	
	740	7029	2714	0	193	0	14:51
$(13, 11, 60)^2$	130	4581	1177	0	80	0	
	560	1789	1364	0	47	0	15:56
$(13, 11, 90)^2$	130	8644	2227	0	300	14.43	
	560	8258	3502	0	145	0	18:01
$(13, 11, 120)^2$	130	10043	2635	0	300	14.72	
	560	13331	5013	0	95	0	18:30
$(13, 11, 60)^2$	130	5044	1410	0	95	0	
	560	2864	2048	0	26	0	19:06
$(13, 11, 90)^2$	130	8089	2088	0	300	12.32	
	560	6418	2980	0	50	0	17:55
$(13, 11, 120)^2$	130	10117	2655	0	300	18.61	
	560	13573	5086	0	117	0	18:32
$(17, 16, 60)^1$	420	1082	294	0	20	0	19:22
$(17, 16, 90)^1$	420	1510	403	0	30	0	18:54
$(17, 16, 120)^1$	420	2112	560	0	64	0	20:05

CASPT2015

Rotterdam July 22 S 21 of 24 S

历 南京 通大 學 交通运输与物流学院

School of Transportation and Logistics, Southwest Jiaotong University

Experiment results

Fig. 10 Total deviation for disruption instances under certain and uncertain duration of disruptions

CASPT2015 Rotte

Rotterdam July 22 S 22 of 24

Experiment results

CASPT2015

Rotterdam July 22 S 23 of 24

Conclusion

Rotterdam July 22

CASPT2015

- A mixed integer programming model is formulated to reschedule trains in a partial segment blockage.
- Various types of trains and trains with different stopping patterns are investigated.
- Uncertain duration of the disruption is handled by updating the information.
- Two important train rescheduling strategies are explicitly compared.
- A large real-world high speed railway case in China is tested.

24 of

24

THANK YOU for your attention!

Any questions