JOURNEY-BASED CHARACTERIZATION OF MULTI-MODAL PUBLIC TRANSPORTATION NETWORKS

 $\begin{array}{l} \textbf{Cecilia Viggiano}^{1} \cdot \text{Haris N. Koutsopoulos}^{2} \cdot \\ \text{Nigel H.M. Wilson}^{1} \cdot \text{John Attanucci}^{1} \end{array}$

July 2015

¹Massachusetts Institute of Technology · ²Northeastern University

MOTIVATION

- Improved understanding of passenger behavior in a multi-modal public transport network can inform planners making strategic decisions
- Smart card transactions produce a rich new data set that can be converted into new information

OBJECTIVES

- Understand roles of different modes in a multi-modal public transport network
 - Do bus services feed rail or are they used as a standalone service?
 - Do bus routes provide an alternative to rail for certain trips?

PREVIOUS RESEARCH

- Smart card analysis focused on observing typical usage patterns and user classification (Utsonomiya et al., 2006; Morency et al., 2007)
- Network structure characterization using metrics derived from graph theory assessed based on the physical network topology

(Garrison and Marble, 1964; Vuchic and Musso, 1991; Derrible and Kennedy, 2010)

INPUTS

- Smart card and AVL data processed with ODX methodology to infer complete journey itineraries (Gordon et al., 2013)
- Stop and station locations

OUTPUTS

OD pairs assigned to seven categories according to mode or combination of modes used

METHODOLOGY OVERVIEW

- Stops and stations are clustered based on location to assign journeys to zonal OD pairs according to their initial and final stops or stations
- 2. OD pairs are categorized based on the share of journeys by each mode or combination of modes

STOP AND STATION CLUSTERING

- Most existing zonal schemes (such as postcodes or census tracts) use roads as boundaries, resulting in stops or stations at the boundary of multiple zones
- Instead, stops and stations clustered according to geographic coordinates using the k-means algorithm

K-MEANS

- K data points selected as initial centroids (can be random, user-specified, or k-means++)
- 2. Assign all data points to closest centroids
- 3. Recalculate centroids

Iterate until centroid locations no longer change significantly

SELECTING THE NUMBER OF CLUSTERS

- Too many clusters can result in insufficient journeys per zonal pair
- Too few clusters can result in walking distances that are unrealistic

LONDON'S PUBLIC TRANSPORT NETWORK

LONDON'S 1,000 ZONES

STOPS AND STATIONS PER ZONE

MODAL DEFINITIONS

Journeys categorized as:

- bus
- rail
- combined

JOURNEYS BY MODE

ZONAL PAIRS CATEGORIZED AS:

- primarily bus
- primarily rail
- primarily combined
- bus and rail
- bus and combined
- rail and combined
- bus, rail, and combined

CATEGORY DEFINITIONS

CATEGORY DEFINITIONS

LONDON CATEGORIZATION

AM PEAK CATEGORIZATION

GEOGRAPHIC VARIATION

VARIATION IN JOURNEY LENGTH

VARIATION IN SPEED

CONCLUSIONS

- Categorization allows for journey data to be interpreted in a meaningful way
- Zonal and categorization schemes also provide a foundation for network evaluation methods

QUESTIONS?