Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel. Rotterdam. The Netherlands Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

An Offline Framework for Reliability Diagnosis by Automatic Vehicle Location Data

Benedetto Barabino¹ - Massimo Di Francesco² Roberto Murru³

¹Technomobility srl, Cagliari – Italy ²University of Cagliari – Department of Mathematics and Computer Science – Italy ³CTM S.p.A. – Public Transport Company, Cagliari - Italy

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel. Rotterdam. The Netherlands Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Summary

- Introduction
- Related literature
- Methodology
 - Reliability characterization
 - Identification of unreliability sources
 - Sources at terminal
 - Down-streaming sources
 - Time spent at bus stops
 - Speed between bus stops
 - Selection of preventive strategies
- Application in a real case
- Conclusion

3

Introduction

- Reliability definition:
 - The capability of Public Transport Companies to provide the service as promised
- Scope:
 - The stochastic environment of bus service operations

Aims:

- Characterizing time reliability over all bus-stops and time periods for each route
- 2. Quantifying the occurrence of unreliability sources
- 3. Selecting preventive strategies accordingly

Related literature (1/3)

- Characterization of the reliability (Abkowitz et al., 1978; Cham, 2006)
 - 1. Data input (manual or automatic collection)
 - 2. Output calculation from data input
 - 3. Service measure (i.e. aggregated metrics)
 - 4. Threshold for acceptability setting
 - 5. Final performance report

e.g. Camus at al., 2005; Lin at al., 2007; Lin and Ruan, 2009; Chen et al., 2009; Mandelzys and Hellinga, 2010; Feng and Figliozzi, 2011; Ma et al., 2014

Trend toward analysis at all bus stops and time periods

Related literature (2/3)

Organization of unreliability sources (by AVL)

Which ones?

- 1. Improper Service Design,
- 2. Driver and Supervision Failures
- 3. Uncertainties in Passengers Volumes
- 4. Uncontrollable External Factors

Where?

- At terminals (e.g. Cham, 2006)
- At and between time points (e.g. Mandelzys and Hellinga, 2010; Feng and Figliozzi, 2011)
- At start terminal and bus stops (e.g. *Hammerle, 2005*)

More work on the link between unreliability problems and whomever is in charge of their correction 5

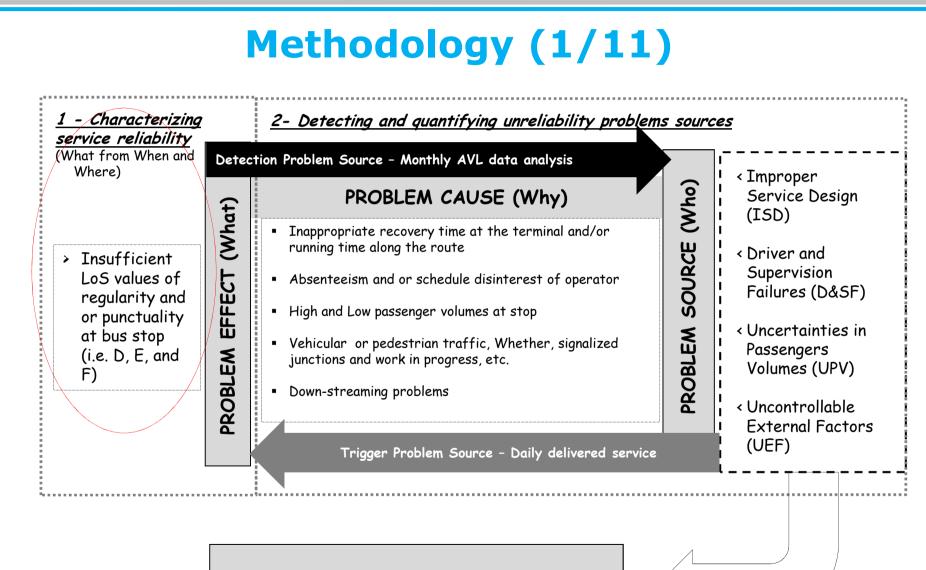
Ceder (2007)

19 23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Related literature (3/3)

Selection of strategies (inspired by Abkowitz et al., 1978;


Cham, 2006):

Type of strategy	Sub-type of strategy	Preventive	Corrective
Priority	Exclusive lanes (Bus only streets, busways, with and contra flow bus lane)	•	
	Route Design	•	
	Signal Priority	•	•
Operational	Reserve vehicle and operators	•	•
	Operator training	•	
	Operator incentives and penalties	•	
	Schedule adjustments	•	/
	Supervision	• /	/
	Improve vehicle access (e.g. fare collection, device for boarding/alightings)	• /	•
Control	Holding (Scheduled-based or Headway-based)		•
	Overtaking		•
	Expressing (Full expressing, Limited stops, Alighting only)		•
	Short- Turning		•
	Deadheading		•
	Exchanging vehicle shift		•
	Adding a reinforce shift		•
	Providing in-vehicle message		•
	Operator self-regulation		•

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

3 - Selection of preventive strategies

Methodology (2/11)

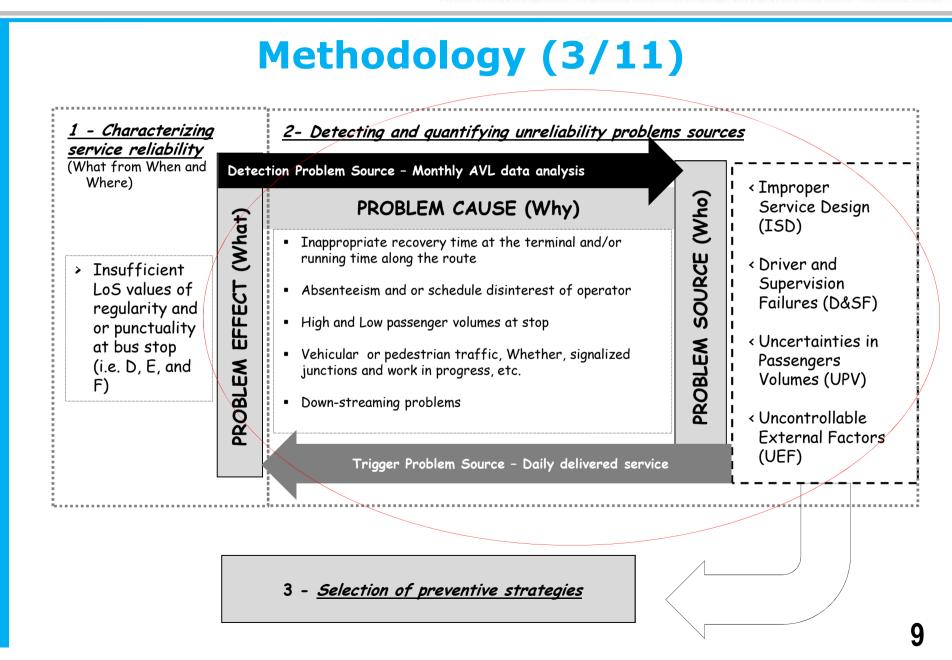
Characterization of the reliability:

- 1. Pick up data from AVL and scheduled services (e.g. date, route, trip number, bus stop code, arrival (or departure) time, etc.)
- Handle AVL data to recognize and address bus overtaking and missing data points (technical failures or incorrect operation in service)
 Barabino et al., 2013

3. & 4. High Frequency Services 3. & 4. Low Frequency Services

Compute actual and scheduled headway as the difference between to consecutive bus arrivals (or departures)

Compute the C_{Vh} for bus stops and time periods Link the C_{Vh} to a Los (e.g. Kittelson and Associates, 2003). Compute the schedule deviation as the difference between actual and scheduled arrival (or departure) Compute the % of Punctual buses for bus stops and time periods Link the % of Punctual buses to a Los (e.g.


Kittelson and Associates, 2003)

5. Investigate unreliability sources, in case of insufficient LoS₈

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Methodology (4/11)

Analysis of unreliability:

Which ones?

- Improper Service Design,
- Driver and Supervision Failures
- Uncertainties in Passengers Volumes
- Uncontrollable External Factors

Where and how?

- At terminals by recovery times
- In the remaining bus stops by down-streaming sources and time spent

In the leg between consecutive bus stops by speed analysis
 Selection and representation of the most frequent source by control dashboards

Methodology (5/11)

Identification of unreliability sources:

- Sources at terminals
- J = set of runs A = Set of terminals

 T_a^{j} = time deviation of run $j \in J$ at terminal $a \in A$.

 RDT_a^j = real departure time of run $j \in J$ at terminal $a \in A$.

 SDT_a^j = scheduled departure time of run $j \in J$ at terminal $a \in A$.

 ART_a^j = available recovery time of run $j \in J$ at terminal $a \in A$.

 RAT_a^{j-1} = real arrival time of run j-1 \in J at terminal a \in A.

$$T_a^{\ j} = RDT_a^{\ j} - SDT_a^{\ j}$$

 $ART_a^{j} = SDT_a^{j-}RAT_a^{j-1}$

Methodology (6/11)

Identification of unreliability sources:

Sources at terminals

Detect Down-streaming sources by comparing $T_a^{\ j}$ and $ART_a^{\ j}$

ART_a^j	T_a^j	< 0	pprox 0	> 0
< 0		n/a	n/a	ISD
≈ 0		ok	ok	D&SF and ISD
> 0		D&SF	ok	D&SF

The notation T_a^{j} and $ART_{aj} \approx 0$ must be read as:

$$\alpha \le T_a^{\ j} \le \beta$$
$$\gamma \le ART_a^{\ j} \le \delta$$

Methodology (7/11)

Identification of unreliability sources:

Down-streaming sources

J = set of runs I = Set of bus stops (different from terminals)

 T_i^j = time deviation of run $j \in J$ at bus stop $i \in I/A$.

 RAT_i^j = real arrival time of run j \in J at bus stop $i \in I/A$.

 SAT_a^{j} = scheduled arrival time of run $j \in J$ at bus stop $i \in I/A$.

 RDT_a^{j} = real departure time of run $j \in J$ at bus stop $i \in I/A$.

 SDT_a^j = scheduled departure time of run $j \in J$ at bus stop $i \in I/A$.

Detect Down-streaming sources by comparing T_{i}^{j} to T_{i-1}^{j}

If $T_{i}^{j} \leq 0 \& T_{i-1}^{j} \leq 0 - \rightarrow$ early arrivals at bus stops i and i-1 If $T_{i}^{j} \geq 0 \& T_{i-1}^{j} \geq 0 - \rightarrow$ late arrivals at bus stops i and i-1

Compute the relative occurences of these two situations

Methodology (8/11)

Identification of unreliability sources:

- Time spent at bus stops
 J = set of runs I = Set of bus stops (different from terminals)
 N = maximum number of scheduled times spent at bus stop i ∈ I/A
- $smts_i$ = scheduled time mean spent at bus stop $i \in I/A$.
- sts_i^j = scheduled time spent by run $j \in J$ at bus stop $i \in I/A$
- rts_i^j = real time spent by run $j \in J$ at bus stop $i \in I/A$

Detect Time spent sources by comparing $smts_i^j$ to the rts_i^j $\varepsilon^* smts_i$ $\zeta^* smts_i$

UPV	OK	UPV	→
Passenger volumes lower than expected		Passegners volumes gretaer than expected	[s]

Compute the relative occurences of these three situations

 rts_i

 $smts_i \frac{\sum_{j=1}^{N} sts_{i,j}}{N}$

Methodology (9/11)

Identification of unreliability sources:

- Speed between bus stops
- J = set of runs I = Set of bus stops (different from terminals)
- N = maximum number of scheduled running times, which are recorded j

 \in J on the leg between stops i \in I/A and i-1 \in I/A

 $\mathsf{I}_{\mathsf{i}\text{-}1,\mathsf{i}}$ =lenght of the leg between stops $\mathsf{i}\in\mathsf{I}/\mathsf{A}$ and $\mathsf{i}\text{-}1\in\mathsf{I}/\mathsf{A}$

 $rs^{j}_{i\text{-}1,i}$ = real speed between stops $i \in I/A$ and $i\text{-}1 \in I/A$

 $sms_{i-1,i}$ = scheduled mean speed between stops $i \in I/A$ and $i-1 \in I/A$

 $\operatorname{rrt}_{i-1,i}^{j}$ = real running time between stops $i \in I/A$ and $i-1 \in I/A$

 $srt_{i\text{-}1,i}{}^{j} = scheduled running time of run <math display="inline">j \in J$ between stops $i \in I/A$ and $i\text{-}1 \in I/A$

Methodology (10/11)

Identification of unreliability sources:

Speed between bus stops (J = set of runs I = Set of bus stops)

$$rs_{i-1,i}^{j} = \frac{l_{i-1,i}}{rrt_{i-1,i}^{j}} \qquad \forall i \in I, \forall j \in J \qquad \qquad sms_{i-1,i} = \frac{l_{i-1,i}}{\frac{\sum_{j=1}^{N} srt_{(i-1,i)j}}{N}} \qquad \forall i \in I, \forall j \in J$$

Detect Speed sources by comparing $rs_{i-1,i}^{j}$ to the $smts_{i-1,i}$

	η ι* <i>sms</i> ;	i–1,i K* SM	$as_{i-1,i}$ or θ	
				$rs_{i-1,i}^{j}$
UEF Congestion	ISD Buses run beyond planned speed	OK Planned speed	D&SF Guide stile too sporty	[km/h]

Compute the relative occurences of these four situations

Methodology (11/11)

Systematization of sources

- Improper Service Design (ISD)
- Driver (D) and Supervision Failures (SF)
- Uncertainties in Passengers Volumes (UPV)
- Uncontrollable External Factors (UEF)

Selection of strategies:

Unreliability source	Type of strategies	Sub-Type of strategies
UEF	Priority	Exclusive lanes
UEF		Route re-design
UEF		Signal Priority
ISD	Operational	Reserve vehicle and operators
D		Operator training
D		Operator incentives and penalties
ISD, UPV		Schedule adjustments
D&SF		Supervision
UPV		Improving vehicle access (e.g. fare collection, device for boarding/alightings)

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Case study (1/5)

CTM Spa Bus operator

- □264 Vehicle AVL- equipped, since 2007
- □ 30 Routes (9 high frequency routes)
- □35 M Passengers carried over the year

AVL Data

July 2014, Weekdays, Excel© as tools to develop the method
 About 100,000 transits processed

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Case study (2/5) The route tested > Toward city center Terminal I Departure > Two – way larger street Bus Stop 4 Terminal > Mixed traffic Buses move along one-way Bus Stop II streets in mixed-traffic Bus Stop 14 \succ Increased pedestrian and 0 vehicular flows occur. > Buses leave the city-centre \square Bus Stop 14 area along two-way streets in Bus Stop 18 mixed-traffic conditions. 6 10 > Buses approach the Bus Stop 4 historical district Bus Stop 7 15 ➢Mixed Traffic >Street is narrow. ➤High numbers of Buses move through the pedestrians and vehicles may Bus Stop 7 historical district, interfere with buses. Bus Stop 11 \geq Only pedestrian and bus movements are allowed 17 18 19

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Case study (3/5)

Regularity Performance

Eastbound direction 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 Bus 7.00 8.00 7.59 8.59 9.59 10.59 11.59 12.59 13.59 14.59 15.59 16.59 17.59 18.59 19.59 stop D nd nd nd nd nd D nd nd nd nd nd nd С В D 2 Α Α А А А nd nd А А В В 3 Α Α Α Α D nd nd А Α D Α С D D В в Α Α А А А А Α А С D В в D А А А А А А Α А nd nd nd nd В D nd nd Α Α в D 6 Α в В С D В В D 7 Α Α Α Α Α Α С D В В А Α В 8 Α Α А А А С D в 9 Α Α В В В Α А Α Α В С D В Α в D 10 Α Α В Α Α Α С D С 11 С В А в С D Α Α Α А 12 nd С 13 Α в С Α В С D С А А В D В С В В С D С С 14 Α Α Α в nd С В С С В С nd 15 В в D А А А С С А В С В С D Α В В D 16 А С D С В С 17 В С В Α В А А С в В С С В С 18 Α В D А А

Punctuality Performance (-1 ÷ 3 minutes)

Eastbound direction

 Bus
 7.00
 8.00
 9.00
 10.00
 12.00
 13.00
 14.00
 15.00
 16.00
 17.00
 18.00
 19.00

 stop
 7.59
 8.59
 9.59
 10.59
 12.59
 13.59
 14.59
 15.59
 16.59
 17.59
 18.59
 19.59

stop	1.57	0)	1.57	10.57	11.57	12.57	15.57	14.57	15.57	10.57	17.57	10.57	17.57
1	А	А	А	А	В	С	С	В	А	А	А	Е	Е
2	А	А	В	В	А	В	С	nd	nd	В	В	D	Е
3	С	С	Е	Е	Е	D	D	nd	nd	F	Е	Е	F
4	F	Е	F	F	F	Е	F	D	Е	F	F	F	F
5	F	F	F	F	F	F	F	Е	F	F	F	F	F
6	nd	F	nd	nd	nd	F	F	nd	nd	F	F	F	F
7	F	F	F	F	F	F	F	F	F	F	F	F	F
8	F	F	F	F	Е	F	F	F	F	F	F	F	F
9	F	F	F	F	Е	F	F	F	F	F	F	F	F
10	F	F	F	Е	D	F	F	F	F	F	F	F	F
11	F	F	F	F	D	F	F	F	F	F	F	F	F
12	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
13	F	F	Е	С	D	E	F	F	Е	F	F	F	F
14	F	nd	Е	nd	D	nd	F	nd	E	nd	F	nd	nd
15	F	nd	Е	nd	Е	nd	F	nd	D	nd	F	nd	nd
16	F	Е	Е	D	D	Е	F	F	Е	Е	F	F	F
17	F	F	Е	D	D	Е	F	F	Е	F	F	F	F
18	F	F	Е	D	D	Е	F	F	F	F	F	F	F

LoS	Comments
A	Service provided like clockwork (Cvh <0.21)
В	Vehicles slightly off headway (Cvh<0.30)
С	Vehicles often off headway (Cvh<0.39)
D	Irregular headway with some bunching (Cvh<0.52)
E	Frequent bunching (Cvh<0.75)
F	Most vehicles bunched (Cvh>0.75)

LoS	Comments
A	90% ÷ 100% of punctual transits
В	80% ÷ 90% of punctual transits
С	70% ÷ 80% of punctual transits
D	60%÷ 70% of punctual transits
E	50% ÷ 60% of punctual transits
F	Less than 50% of punctual transits

(Kittelson & ass. et al, 2003a;2003b)

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Case study (4/5)

Bus stop	D&SF	ISD	ISD and or D&SF	ok
1	0 %	49~%	1%	50%

	ne period)0 - 19.59]	Dow	n-strear	ning anal	lysis	Tim	e spent ai	nalysis	Leg_C ode					
В	us stop	E_E	L_L	Other	OK	L_UPV	U_UPV	OK		D&SF	ISD	UEF	ОК	
							-		TIA	100%	0%	0%	0%	
モ	2	1%	41%	14%	44%	100%	0%	0%	T2A	100%	0%	0%	0%	
Part	3	9%	34%	27%	30%	79%	1%	20%	12/1	10070	070	070	070	
					• • • •		- -	• • • •	ТЗА	85%	0%	6%	9%	
	4	26%	27%	21%	26%	59%	12%	29%	T4A	90%	0%	1%	9%	
5	5	39%	25%	10%	26%	23%	19%	58%	1 7/1	7070	070	1 /0	270	
Part		1.60/	220/	60/	250/	2004	110/	510/	T5A	96%	0%	2%	3%	
۲ ۵	6	46%	23%	6%	25%	38%	11%	51%	T6A	42%	0%	25%	32%	
	7	49%	22%	1%	28%	5%	65%	30%		,.	0,0		_	

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

	Time period [19.00 - 19.59]		n-strear	ning anal	ysis	Tim	Time spent analysis			Speed analysis			
Bu	s stop	E_E	L_L	Other	ОК	L_UPV	U_UPV	ОК	-1. ľ	D&SF	ISD	UEF	ОК
	7	49%	22%	1%	28%	5%	65%	30%	T7A	7%	0%	80%	13%
т м	8	45%	21%	8%	26%	5%	71%	24%					-
Part	9	38%	23%	15%	23%	93%	2%	5%	T8A	6%	0%	82%	12%
	10	30%	27%	22%	21%	8%	58%	34%	Т9А	6%	0%	77%	17%
	10								T10A	0%	0%	100%	0%
4	11	24%	39%	10%	27%	7%	54%	39%	T11A	nd	nd	nd	nd
Part	12	nd	nd	nd	nd	nd	nd	nd			,	1	
<u> </u>	13	nd	nd	nd	nd	12%	42%	47%	T12A	nd	nd	nd	nd
	14	nd	nd	nd	nd	nd	nd	nd	T13A	nd	nd	nd	nd
		na							T14A	nd	nd	nd	nd
т С	15	nd	nd	nd	nd	nd	nd	nd	T15A	nd	nd	nd	nd
Part	16	nd	nd	nd	nd	53%	2%	46%		1000/			
	17	27%	38%	8%	27%	75%	0%	25%	<i>T16A</i>	100%	0%	0%	0%
	 18	31%	36%	5%	28%		_		<i>T17A</i>	99%	0%	0%	1%

Case study (5/5)

- Recommended strategies:
 - Schedule adjustment

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam, The Netherlands Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Conclusions

Main contributions

- Generate a mainstream source of AVL archived data;
- Include streams of AVL data in the framework using a single data source and integrating procedures to measure the magnitude of each unreliability source;
- Provide details on bus route unreliability sources at all bus stops and time periods.

Main implications

- Significant time and energy savings in the study of large data sets
- Usefulness of an accurate AVL in the specific application
- Understandability of CDs for transit managers and improvement of decision-making processes

Future research

- Application at all route directions
- Tuning of thresholds
- Headway-based analysis of unreliability sources

Conference on Advanced Systems in Public Transport

19-23 July 2015 | nhow hotel, Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

References

- Abkowitz M, Slavin H, Waksman R, Englisher R, Wilson N (1978) Transit service reliability. Tech. rep., USDOT Transportation Systems Center and Multisystems, Cambridge, MA. NTIS, no. UMTA/MA-06-0049-78-1
- 2. Associates K, Administration USFT, Program TCR, Corporation TD (2003) Transit Capacity and Quality of Service Manual, vol 100. Transportation Research Board
- 3. Barabino B, Di Francesco M, Mozzoni S (2013a) Regularity diagnosis by automatic vehicle location raw data. Public Transport 4(3):187-208
- Barabino B, Di Francesco M, Mozzoni S (2013b) Regularity analysis on bus networks and route directions by Automatic Vehicle Location raw data. IET Intelligent Transportation Systems 7(4):473-480
- Barabino B, Di Francesco M, Mozzoni S (2014) An oine framework for handling automatic passenger counting raw data. IEEE Transaction on Intelligent Transportation Systems 15(6):2443-2456
- Barabino B, Di Francesco M, Mozzoni S (2015) Rethinking bus punctuality by integrating automatic vehicle location data and passenger patterns. Transportation Research Part A: Policy and Practice 75:84-95
- Camus R, Longo G, Macorini C (2005) Estimation of transit reliability level-ofservice based on automatic vehicle location data. Transportation Research Record: Journal of the Transportation Research Board 1927(1):277-286
- 8. Ceder A (2007) Public transit planning and operation: theory, modelling and practice. Springer
- Cham LC (2006) Understanding bus service reliability: a practical framework using AVL/APC data. Master's thesis, Massachusetts Institute of Technology
- Chen X, Yu L, Zhang Y, Guo J (2009) Analyzing urban bus service reliability at the stop, route, and network levels. Transportation Research Part A: Policy and Practice 43(8):722-734
- Cortes CE, Gibson J, Gschwender A, Munizaga M, Zu~niga M (2011) Commercial bus speed diagnosis based on gps-monitored data. Transportation Research Part C: Emerging Technologies 19(4):695-707
- Feng W, Figliozzi M (2011) Using archived avl/apc bus data to identify spatial temporal causes of bus bunching. In: Compendium of papers of 90th Transportation Research Board, Washington, D.C.
- Furth PG, Muller TH, Strathman JG, Hemily B (2004) Designing automated vehicle location systems for archived data analysis. Transportation Research Record: Journal of the Transportation Research Board 1887(1):62-70
- 14. Furth PG, Hemily B, Muller TH, Strathman JG (2006) Using archived AVLAPC data to improve transit performance and management. Project H-28
- Hammerle M, Haynes M, McNeil S (2005) Use of automatic vehicle location and passenger count data to evaluate bus operations. Transportation Research Record: Journal of the Transportation Research Board 1903(1):27-34
- Henderson G, Adkins H, Kwong P (1990) Toward a passenger-oriented model of subway performance. Transportation Research Record (1266)
- 17. Horbury AX (1999) Using non-real-time automatic vehicle location data to improve bus services. Transportation Research Part B 33(8):559 579

- Hounsell N, Shrestha B, Wong A (2012) Data management and applications in a worldleading bus feet. Transportation Research Part C: Emerging Technologies 22:76-87
- 19. Kimpel TJ (2001) Time point level analysis of transit service reliability and passenger demand. PhD thesis, Portland State University,Oregon
- Koffman J (1992) Automatic passenger counting data: Better schedulesimprove on-time performance. In: Computer-Aided Transit Scheduling, Springer, pp 259-282
- 21. Lin J, Ruan M (2009) Probability-based bus headway regularity measure. IET intelligent transport systems 3(4):400-408
- Lin J, Wang P, Barnum DT (2008) A quality control framework for bus schedule reliability. Transportation Research Part E: Logistics and Transportation Review 44(6):1086-1098
- 23. Liu R, Sinha S (2007) Modelling urban bus service and passenger reliability.
- 24. Ma Z, Ferreira L, Mesbah M (2014) Measuring service reliability using automatic vehicle location data. Mathematical Problems in Engineering 2014
- 25. Mandelzys M, Hellinga B (2010) Identifying causes of performance issues in bus schedule adherence with automatic vehicle location and passenger count data. Transportation Research Record: Journal of the Transportation Research Board 2143(1):9-15
- Mendes-Moreira J, Moreira-Matias L, Gama J, de Sousa JF (2015) Validating the coverage of bus schedules: A machine learning approach. Information Sciences 293:299-313
- Moreira-Matias L, Mendes-Moreira J, de Sousa JF, Gama J (2015) Improving mass transit operations by using avl-based systems: A survey. IEEE Transaction on Intelligent Transportation Systems (forthcoming) 99(1):100 -101
- Nakanishi YJ (1997) Part 1: Bus: Bus performance indicators: On-time performance and service regularity. Transportation Research Record: Journal of the Transportation Research Board 1571(1):1-13
- Strathman JG, Dueker KJ, Kimpel T, Gerhart R, Turner K, Taylor P, Callas S, Grin D, Hopper J (1999) Automated bus dispatching, operations control, and service reliability: Baseline analysis. Transportation Research Record: Journal of the Transportation Research Board 1666(1):28-36
- 31. Tetreault PR, El-Geneidy AM (2010) Estimating bus run times for new limited-stop service using archived avl and apc data. Transportation Research Part A: Policy and Practice 44(6):390-402
- Trompet M, Liu X, Graham DJ (2011) Development of key performance indicator to compare regularity of service between urban bus operators. Transportation Research Record: Journal of the Transportation Research Board 2216(1):33-41
- Van Oort N (2011) Service reliability and urban public transport design. PhD thesis, Delft University of Technology

Conference on Advanced Systems in Public Transport 19-23 July 2015 | nhow hotel. Rotterdam. The Netherlands

Organized by Erasmus School of Economics and Rotterdam School of Management, Erasmus University

Thank you for your kind attention

Thanks to: Eng. S. Mozzoni – Technomobility AVL specialist

FOR FURTHER INFORMATION Technomobility srl – c/o CTM Spa Viale Trieste 159/3 – 09123 Cagliari (Italy)

bbarabino@gmail.com