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Tariff Systems

o Distance tariff: price depends
on trip length

o Unit tariff: all trips cost the
same

@ Zone tariff:

> arbitrary prices: arbitrarily
chosen price for a given pair
of zones (orig-dest)

» counting zones. number of
zones touched on trip times
price per zone
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Revenue Management for Public Transport Companies

@ Revenue maximization

@ Optimization of prices and zone structure

@ Demand is a function of price and travel time

30



Public Transport Demand (Example SF Bay Area)

@ Transit mode choice is price (in-) elastic (f.e., Hensher (2010), TRB)
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Public Transport Demand (Example SF Bay Area)

@ Transit mode choice is price (in-) elastic (f.e., Hensher (2010), TRB)

o Customers choose time shortest path (f.e., Noland/Polak (2002),
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Object of Research

Problem Statement

Partition the service area into zones and find a fare (price per touched
zone) such that the total expected revenue is maximized.
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Object of Research

Problem Statement
Partition the service area into zones and find a fare (price per touched
zone) such that the total expected revenue is maximized.

Consider
@ Revenue = demand x price
@ Price = fare x number of zones touched on trip
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Object of Research

Problem Statement
Partition the service area into zones and find a fare (price per touched
zone) such that the total expected revenue is maximized.
Consider
@ Revenue = demand X price
@ Price = fare x number of zones touched on trip
Scant literature; most important
e Hamacher/Schébel (2004), OR
e Gattuso/Musolino (2007), LNCS

Issues
@ Focus on conversion to tariff zone system (given reference price)
@ Demand is exogenous and static: demand independent from price
@ Customers choose cheapest path



Concept
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Public Transport Graph

@ Service area divided into districts
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Public Transport Graph

@ Service area divided into districts

@ One unique (artificial) stop per district:
set 7
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Public Transport Graph

Service area divided into districts

One unique (artificial) stop per district:
set 7

Stops are connected by edges: set £

Edges are weighted by (average)
travel-time
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Public Transport Graph

B()

Service area divided into districts

One unique (artificial) stop per district:

set 7
Stops are connected by edges: set £

Edges are weighted by (average)
travel-time

Customers choose time shortest path
Shortest path tree with root 0 € 7
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Zones and Zone Borders
Set

t Number of zones on shortest path from 7 to j with ¢t =1,...,T};
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Zones and Zone Borders
Set

t Number of zones on shortest path from 7 to j with ¢t =1,...,T};

Variables

Wi; Number of zone borders (¢t — 1) on shortest path from i € Z to j € T

X;; =1, if a zone border exists between adjacent stops ¢ and j, i.e.
[i,j]e&



Zones and Zone Borders
Set

t Number of zones on shortest path from 7 to j with ¢t =1,...,T};

Variables

Wi; Number of zone borders (¢t — 1) on shortest path from i € Z to j € T

X;; =1, if a zone border exists between adjacent stops ¢ and j, i.e.
i,jleé€

O O@

Example:

Xos=X56=1
6) = W16 = 2 zone borders
< t = 3 zones on shortest path 1-6




Revenue and Zones

Fare
7 Price per zone touched on shortest path

@ Actual ticket cost (single, monthly etc.) derived from 7
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Revenue and Zones

Fare
7 Price per zone touched on shortest path

@ Actual ticket cost (single, monthly etc.) derived from 7

Transit Demand

PTT;j; (m) Number of public transport trips given fare = and
t =1,...,T;; touched zones on shortest path i-j

PTT;j (m) = f (- t, travel-time, . . .)
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Revenue and Zones

Fare
7 Price per zone touched on shortest path

@ Actual ticket cost (single, monthly etc.) derived from 7

Transit Demand

PTT;j; (m) Number of public transport trips given fare = and
t =1,...,T;; touched zones on shortest path i-j

PTT;j (m) = f (- t, travel-time, . . .)
Revenue

it (m) expected revenue on shortest path i-j given fare 7 and
t=1,...,T;; touched zones

T'ijt (7‘(’) =7-t- PTTijt (7‘(’)
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Revenue and Zone Borders

Variable

Yije =1, ift =1,...,T;; tariff zones are touched on shortest path i-j
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Variable
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Revenue and Zone Borders

Variable

Yije =1, ift =1,...,T;; tariff zones are touched on shortest path i-j

ei=1toj=5

N > let ar{g m;x (r15:Y15:) = 1,
t=1,..., 15
@ kSJ @ > i.e., Y151 =1

= Wis=0
®

ei=1toj=6

(s
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Revenue and Zone Borders

Variable

Yije =1, ift =1,...,T;; tariff zones are touched on shortest path i-j

ei=1toj=5

> let argmax (r15:Y15:) = 1,
DG arg max
J kj \ > ie., Y151 =1
= Wis=0
ei=1toj=6
@ 6> > let arg max (Tlﬁtylﬁt) =2,
t=1,....,Thg
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Revenue and Zone Borders

Variable

Yije =1, ift =1,...,T;; tariff zones are touched on shortest path i-j

ei=1t0j=5
» let argmax (r15:Y15:) = 1,
@ @ @ t:{%.‘.,Tm( 15t 15t)
J kj \ > ie., Y151 =1
= Wis=0
ei=1tj=6
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®
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Revenue and Zone Borders

Variable

Yije =1, ift =1,...,T;; tariff zones are touched on shortest path i-j

@

O,

ei=1toj=5
» let argmax (ri5Yis:) = 1,
t=1,...,T15
> i.e., Y151 =1
= Wi5=0
@ei=1toj=6
> let arg max (r16¢Y16t) = 2,
t=1,....,Th¢
> i.e., Y162 =1
= Wi=1
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Revenue and Zone Borders

Variable
if t =1,...,T;; tariff zones are touched on shortest path i-j

Yiie =1,

@

O,

ei=1toj=5
» let argmax (ri5Yis:) = 1,
t=1,...,T15
> i.e., Y151 =1
= Wi5=0
@ei=1toj=6
> let arg max (r16¢Y16t) = 2,
t=1,....,Th¢
> i.e., Y162 =1
= Wi=1

oW15:OandW16:1
= X12:X25:()and
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Revenue and Zone Borders

Variable

1,...,T;; tariff zones are touched on shortest path i-j

@

O,

oi=1ltoj=5
» let argmax (ri5Yis:) = 1,
t=1,...,T15
> i.e., Y151 =1
= Wis =0
ei=1toj=6

> let arg max (r16¢Y16t) = 2,
t=1,....,T16
> i.e., Y162 =1

= Wig=1
o W15:0and W16:1
= X2 = X95 =0 and
e X5=1
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Tariff Zone Contiguity
Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border.

l.e., all stops within a tariff zone can be reached without crossing a tariff
zone border
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Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border.
l.e., all stops within a tariff zone can be reached without crossing a tariff
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Flow concept
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Tariff Zone Contiguity
Contiguity
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Tariff Zone Contiguity
Contiguity
All stops of a tariff zone are surrounded by a continuous tariff zone border.

l.e., all stops within a tariff zone can be reached without crossing a tariff
zone border

Flow concept

N
o

oo
O——e—

él)—@--[ﬁ
| O D—i—®

ORE N VG
R ’ /!

Xos =1 Xo3 =1

11/30



Tariff Zone Contiguity
Contiguity
All stops of a tariff zone are surrounded by a continuous tariff zone border.

l.e., all stops within a tariff zone can be reached without crossing a tariff
zone border

Flow concept
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Tariff Zone Contiguity
Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border.
l.e., all stops within a tariff zone can be reached without crossing a tariff
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Tariff Zone Contiguity
Contiguity
All stops of a tariff zone are surrounded by a continuous tariff zone border.

l.e., all stops within a tariff zone can be reached without crossing a tariff
zone border

Flow concept
T ———
oG GDme—
(D

Xos=1Xoz3 =1

JEAN

&/
(3

3\
>/
3

\

€
®

11/30



Enforcing Structure on District Borders

Input data Feasible solutions
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Enforcing Structure on District Borders

Input data Feasible solutions
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Tariff Zone Planning Problem



Model Part I: Maximizing Revenue

Objective: revenue maximization for a given 7

Ti;
Maximize F' () = Z Zrijt (m) Yije (1)

,j€T, t=1
i<j

Note, Yj;; € {0,1}

Definite number of tariff zones on shortest path i-j

Ty
> Yig=1 VijeLi<j (2)
t=1
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Model Part II: Zones and Zone Borders

Determine number of zone borders on shortest path -
T
> (- 1) Y =Wy Vi, j€T,i<j (3)
t=1

Note, W;; >0
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Model Part II: Zones and Zone Borders

Determine number of zone borders on shortest path -
Tij

> (- 1) Y =Wy Vi,j€T,i<] (3)
t=1

Note, Wij >0

Location of zone borders in shortest path tree

Woi + Xij + Xjs = Wy YVoeT, [’i,j]EBO (4)
Note, W;; = 0 and XZ']' € {0, 1}
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Model Part II: Zones and Zone Borders

Determine number of zone borders on shortest path -
Tij

> (- 1) Y =Wy Vi,jel,i<j
t=1

Note, Wij >0

Location of zone borders in shortest path tree

Woi + Xij + Xjs = Wy VoeZlijl€B,
Note, W;; = 0 and Xij € {0, 1}
Symmetry

X,'j-i-ij‘Sl V[’i,j]eg,i<j
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Model Part Ill: Contiguity

Coupling zone border (between i and ;) and flow (along n, m)
Xij < Vom < aXy; V [i,j] €& [n,m] € Ap 51,1 < j (6)
s S Wiy & @iy V[l €& n,ml €A, ,i<i  (7)

Notes

Ajij) Arc of district border corresponding to edge [i, j] of the
transit graph

Vim Non-negative flow variable corresponding to arc [n,m] of the
district border graph G

o Sufficiently large scalar
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Model Part Ill: Contiguity
Coupling zone border (between i and ;) and flow (along n, m)
Xij < Vi < aXij ¥ [iyj] €&, [nom] € Agyi<i  (6)
Xji < Vin < aXj; V[i,jl€ & [n,m] € Ayi<i  (7)
Flow constraints
Y Vam— > V=0 VneN  (8)
[n,m]eG [m,n]eqG

N Nodes of the district border graph G

Notes

Ajij) Arc of district border corresponding to edge [i, j] of the
transit graph

Vium Non-negative flow variable corresponding to arc [n,m] of the
district border graph G

o Sufficiently large scalar
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Model Simplification: District Borders Structure
Replacement of (5)—(7), i.e., symmetry and flow-border coupling by

Vim = Xy Y [i,5] € & [n,m] € Ay i< (9)
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Model Simplification: District Borders Structure
Replacement of (5)—(7), i.e., symmetry and flow-border coupling by

Vam = Xy v [i7j]ega[num]€"4[i,j]7i<j (9)
Constraining flow along a district border arc

Z Vom < @ VmeN (10)
[n,m|€eG

For example, @ = 1 avoids a flow
quantity of 2 along border arc
nl0 —nll
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Fare Problem

Problem Statement

Find fare 7, such that total expected revenue F' (7) is maximized.

@ m: consider easily communicable prices. F.e. 7 =1,1.1,1.2,...,5.

@ Note: price degression can be easily considered
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Fare Problem

Problem Statement

Find fare 7, such that total expected revenue F' (7) is maximized.

@ m: consider easily communicable prices. F.e. 7 =1,1.1,1.2,...,5.

@ Note: price degression can be easily considered

Determine 7
@ Set 7 to lowest/highest value
@ Solve tariff zone planning problem (1) - (10)
@ Fix lower bound on F as F = F*(r)
© Set 7 to the next higher/lower value
© Repeat 2 - 5 for all feasible values of 7
@ Choose highest F* (7).
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Numerical Studies and
Applications



Numerical Studies: Example " Ring Structure”

Synthetic data
GAMS/CPLEX; standard Windows-Notebook
CPU < 2h per problem

10 different values for 7

e 6 6 o6 o

Averages over ten random instances

|Z|  connectivity total CPU avg. gap % % opt

81 low 256.42 0 100
81  high 448.43 0 100
121 low 1,787.72 0 100
121  high 1,075.86 0 100
169 low 7,839.24 0.64 10
169 high 7,477.88 0.45 20
225 low 9,413.61 0.02 90

225  high 15,065.79 1.24 0
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Application: San Francisco
Bay Area



San Francisco Bay Area

[] Public use Microdata Area (PUMA) [] Public Use Microdata Area (PUMA) [ Public Use Microdata Area (PUMA)
[ Transport Anaiysis Zone (TAZ) 6PN Strecken o Bezitksknot ale’)

—— GPNV-Kante (ge

Trips, travel-times, and travel-cost given at TAZ-level (Metropolitan
Transport Commission (2008): Transportation 2035 Plan for the San Francisco Bay Area)
Nearly 1500 TAZ — aggregation to PUMA

Public transport graph on PUMA level: 60 nodes and 100 edges

20 values of 7

Transport demand model given by MTC

Scenario: Unified tariff system for the entire bay area

22 /30



Results

revenue & # zones revenue & mkt. share comp. effort
e - :lo ol s \ y v o g — crumaen “g“
EN g 2 X, — F o g | — cruemuaei
i sz 8/ | § 58 I
iq ) is // -3 Ug J
T 3 3 ) T T 3 3 4 5 ° 77177_";/ \377;;; 7777777 5
Basic scenario 2015 (MTC): Revenue maximization:
@ Market share transit: 10% @ Market share transit: 7%
@ Revenue: 5.6 millionen USD/day e Revenue: 6.8 Millionen USD /day
@ Average price: 2.24 USD @ Average price: 3.89 USD
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Results: Tariff Zone Maps

Demand maximization with respect to deviation from F*(7*): 0

6=0.1, transit 9.3% 6=0.2, transit 10.7%

6=0.3, transit 11.4% 6=0.4, transit 12.4% 6=0.5, transit 13.2%

24 /30



Summary & Outlook



Conclusion

@ New problem
@ Flexible structure

@ Real world instances solvable by standard solver
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Conclusion

@ New problem
@ Flexible structure
@ Real world instances solvable by standard solver

What’s next?
@ Experiments on distict border structure
o Fix-and-Optimize heuristic
o Consideration of revenue sharing between service operators
o

Application to road usage charging

26
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San Francisco MUNI Data
@ 200 nodes, 380 edges, 20 values of

i 78l ﬂnvz}i’ﬁ,
i o)
MR 2%

Transit routes Gen. transit network

Dual graph

29/30



San Francisco MUNI Results

o Computational effort varies between seconds and several hours per
problem

e

&
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7 1 USD, 33 zones
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