Tariff Zone Planning for Public Transport Companies

Sven Müller, Knut Haase Institute for Transport Economics, Universität Hamburg

Schedule

Introduction

2 Concept

- Zone Problem
- Fare Problem

4 Numerical Studies and Applications

- Numerical Studies
- Application: San Francisco Bay Area

5 Summary & Outlook

Tariff Systems

- **Distance tariff**: price depends on trip length
- Unit tariff: all trips cost the same
- Zone tariff:
 - arbitrary prices: arbitrarily chosen price for a given pair of zones (orig-dest)
 - counting zones: number of zones touched on trip times price per zone

Tariff Systems

- **Distance tariff**: price depends on trip length
- Unit tariff: all trips cost the same
- Zone tariff:
 - arbitrary prices: arbitrarily chosen price for a given pair of zones (orig-dest)
 - counting zones: number of zones touched on trip times price per zone

Tariff Systems

- **Distance tariff**: price depends on trip length
- Unit tariff: all trips cost the same
- Zone tariff:
 - arbitrary prices: arbitrarily chosen price for a given pair of zones (orig-dest)
 - counting zones: number of zones touched on trip times price per zone

Revenue Management for Public Transport Companies

- Revenue maximization
- Optimization of prices and zone structure
- Demand is a function of price and travel time

Public Transport Demand (Example SF Bay Area)

• Transit mode choice is price (in-) elastic (f.e., Hensher (2010), TRB)

Public Transport Demand (Example SF Bay Area)

- Transit mode choice is price (in-) elastic (f.e., Hensher (2010), TRB)
- Customers choose time shortest path (f.e., Noland/Polak (2002), *TranRev*)

Problem Statement

Partition the service area into *zones* and find a *fare* (price per touched zone) such that the total expected revenue is maximized.

Problem Statement

Partition the service area into *zones* and find a *fare* (price per touched zone) such that the total expected revenue is maximized.

Consider

- *Revenue* = demand × price
- *Price* = fare × number of zones touched on trip

Problem Statement

Partition the service area into *zones* and find a *fare* (price per touched zone) such that the total expected revenue is maximized.

Consider

- *Revenue* = demand × price
- *Price* = fare × number of zones touched on trip

Scant literature; most important

- Hamacher/Schöbel (2004), OR
- Gattuso/Musolino (2007), LNCS

Problem Statement

Partition the service area into *zones* and find a *fare* (price per touched zone) such that the total expected revenue is maximized.

Consider

- *Revenue* = demand × price
- *Price* = fare × number of zones touched on trip

Scant literature; most important

- Hamacher/Schöbel (2004), OR
- Gattuso/Musolino (2007), LNCS

Issues

- Focus on conversion to tariff zone system (given reference price)
- Demand is exogenous and static: demand independent from price
- Customers choose cheapest path

Concept

• Service area divided into districts

- Service area divided into districts
- One unique (artificial) stop per district: set \mathcal{I}

- Service area divided into districts
- One unique (artificial) stop per district: set ${\cal I}$
- $\bullet\,$ Stops are connected by edges: set ${\cal E}\,$
- Edges are weighted by (average) travel-time

- Service area divided into districts
- One unique (artificial) stop per district: set ${\cal I}$
- Stops are connected by edges: set ${\mathcal E}$
- Edges are weighted by (average) travel-time
- Customers choose time shortest path

 B_o Shortest path tree with root $o \in \mathcal{I}$

 $-B_1$

Zones and Zone Borders

Set

t Number of zones on shortest path from i to j with $t = 1, \ldots, T_{ij}$

Zones and Zone Borders

Set

t Number of zones on shortest path from i to j with $t = 1, \ldots, T_{ij}$

Variables

- W_{ij} Number of zone borders (t-1) on shortest path from $i \in \mathcal{I}$ to $j \in \mathcal{I}$
- $X_{ij} = 1,$ if a zone border exists between adjacent stops i and j, i.e. $[i,j] \in \mathcal{E}$

Zones and Zone Borders

Set

t Number of zones on shortest path from i to j with $t = 1, \ldots, T_{ij}$

Variables

- W_{ij} Number of zone borders (t-1) on shortest path from $i\in\mathcal{I}$ to $j\in\mathcal{I}$
- $X_{ij} = 1,$ if a zone border exists between adjacent stops i and j, i.e. $[i,j] \in \mathcal{E}$

Example:

$$\begin{array}{l} X_{2,5} = X_{5,6} = 1 \\ \Rightarrow W_{1,6} = 2 \text{ zone borders} \\ \Leftrightarrow t = 3 \text{ zones on shortest path 1-6} \end{array}$$

Revenue and Zones

Fare

- $\pi\,$ Price per zone touched on shortest path
- Actual ticket cost (single, monthly etc.) derived from π

Revenue and Zones

Fare

- $\pi\,$ Price per zone touched on shortest path
- Actual ticket cost (single, monthly etc.) derived from π

Transit Demand

 $\mathsf{PTT}_{ijt}(\pi) \text{ Number of public transport trips given fare } \pi \text{ and} \\ t = 1, \dots, T_{ij} \text{ touched zones on shortest path } i-j \\ \mathsf{PTT}_{ijt}(\pi) = f(\pi \cdot t, \mathsf{travel-time}, \dots)$

Revenue and Zones

Fare

- $\pi\,$ Price per zone touched on shortest path
- Actual ticket cost (single, monthly etc.) derived from π

Transit Demand

 $\mathsf{PTT}_{ijt}(\pi)$ Number of public transport trips given fare π and $t = 1, \dots, T_{ij}$ touched zones on shortest path *i*-*j*

$$\mathsf{PTT}_{ijt}\left(\pi\right) = f\left(\pi \cdot t, \mathsf{travel-time}, \ldots\right)$$

Revenue

 $r_{ijt}(\pi)$ expected revenue on shortest path *i*-*j* given fare π and $t = 1, \dots, T_{ij}$ touched zones $r_{ijt}(\pi) = \pi \cdot t \cdot \mathsf{PTT}_{ijt}(\pi)$

Variable

Variable

•
$$i = 1$$
 to $j = 5$

Variable

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

Variable

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

Variable

 Y_{ijt} =1, if $t = 1, \ldots, T_{ij}$ tariff zones are touched on shortest path i-j

• i = 1 to j = 5

• let
$$\arg \max_{\substack{t=1,...,T_{15}}} (r_{15t}Y_{15t}) = 1$$
,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

Variable

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

•
$$i = 1$$
 to $j = 6$

Variable

 $Y_{ijt} = 1$, if $t = 1, \ldots, T_{ij}$ tariff zones are touched on shortest path *i*-*j*

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

•
$$i = 1$$
 to $j = 6$

• let $\underset{t=1,...,T_{16}}{\operatorname{arg\,max}} (r_{16t}Y_{16t}) = 2$,

Variable

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

•
$$i = 1$$
 to $j = 6$

▶ let
$$\underset{t=1,...,T_{16}}{\operatorname{arg\,max}} (r_{16t}Y_{16t}) = 2$$
,
▶ i.e., $Y_{162} = 1$
⇒ $W_{16} = 1$

Variable

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

•
$$i = 1$$
 to $j = 6$

▶ let
$$\underset{t=1,...,T_{16}}{\operatorname{arg\,max}} (r_{16t}Y_{16t}) = 2$$
,
▶ i.e., $Y_{162} = 1$
⇒ $W_{16} = 1$

•
$$W_{15} = 0$$
 and $W_{16} = 1$

Variable

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

•
$$i = 1$$
 to $j = 6$

▶ let
$$\underset{t=1,...,T_{16}}{\operatorname{arg\,max}} (r_{16t}Y_{16t}) = 2$$
,
▶ i.e., $Y_{162} = 1$
⇒ $W_{16} = 1$

•
$$W_{15} = 0$$
 and $W_{16} = 1$

$$\Rightarrow X_{12} = X_{25} = 0$$
 and

Variable

 $Y_{ijt} = 1$, if $t = 1, \ldots, T_{ij}$ tariff zones are touched on shortest path *i*-*j*

- i = 1 to j = 5
 - let $\underset{t=1,...,T_{15}}{\operatorname{arg\,max}} (r_{15t}Y_{15t}) = 1$,

• i.e.,
$$Y_{151} = 1$$

$$\Rightarrow W_{15} = 0$$

•
$$i = 1$$
 to $j = 6$

▶ let $\underset{t=1,...,T_{16}}{\operatorname{trag}} (r_{16t}Y_{16t}) = 2$, ▶ i.e., $Y_{162} = 1$ ⇒ $W_{16} = 1$

•
$$W_{15} = 0$$
 and $W_{16} = 1$

$$\Rightarrow X_{12} = X_{25} = 0$$
 and

• $X_{56} = 1$

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Flow concept

$$X_{25} = 1$$

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Flow concept

 $X_{25} = 1$

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Flow concept

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Flow concept

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Flow concept

Contiguity

All stops of a tariff zone are surrounded by a continuous tariff zone border. I.e., all stops within a tariff zone can be reached without crossing a tariff zone border

Flow concept

Input data

Feasible solutions

Input data

Feasible solutions

Tariff Zone Planning Problem

Model Part I: Maximizing Revenue

Objective: revenue maximization for a given $\boldsymbol{\pi}$

Maximize
$$F(\pi) = \sum_{\substack{i,j \in \mathcal{I}, \ i < j}} \sum_{t=1}^{T_{ij}} r_{ijt}(\pi) Y_{ijt}$$
 (1)

Note, $Y_{ijt} \in \{0, 1\}$

Definite number of tariff zones on shortest path i-j

$$\sum_{t=1}^{T_{ij}} Y_{ijt} = 1 \qquad \forall i, j \in \mathcal{I}, i < j$$
(2)

Model Part II: Zones and Zone Borders

Determine number of zone borders on shortest path i-j

$$\sum_{t=1}^{T_{ij}} (t-1) Y_{ijt} = W_{ij} \qquad \forall i, j \in \mathcal{I}, i < j \qquad (3)$$

Note, $W_{ij} > 0$

Model Part II: Zones and Zone Borders

Determine number of zone borders on shortest path i-j

$$\sum_{t=1}^{T_{ij}} (t-1) Y_{ijt} = W_{ij} \qquad \forall i, j \in \mathcal{I}, i < j \qquad (3)$$

Note, $W_{ij} \ge 0$

Location of zone borders in shortest path tree

 $W_{oi} + X_{ij} + X_{ji} = W_{oj} \qquad \forall o \in \mathcal{I}, [i, j] \in B_o$ (4) Note, $W_{ii} = 0$ and $X_{ij} \in \{0, 1\}$

Model Part II: Zones and Zone Borders

Determine number of zone borders on shortest path i-j

$$\sum_{t=1}^{T_{ij}} (t-1) Y_{ijt} = W_{ij} \qquad \forall i, j \in \mathcal{I}, i < j \qquad (3)$$

Note, $W_{ij} \ge 0$

Location of zone borders in shortest path tree

 $W_{oi} + X_{ij} + X_{ji} = W_{oj} \qquad \forall o \in \mathcal{I}, [i, j] \in B_o$ (4) Note, $W_{ii} = 0$ and $X_{ij} \in \{0, 1\}$

Symmetry

$$X_{ij} + X_{ji} \le 1 \qquad \forall \ [i,j] \in \mathcal{E}, i < j \qquad (5)$$

Model Part III: Contiguity

Coupling zone border (between i and j) and flow (along n, m)

 $X_{ij} \leq V_{nm} \leq \alpha X_{ij} \qquad \forall \ [i,j] \in \mathcal{E}, [n,m] \in A_{[i,j]}, i < j \qquad (6)$ $X_{ji} \leq V_{mn} \leq \alpha X_{ji} \qquad \forall \ [i,j] \in \mathcal{E}, [n,m] \in A_{[i,j]}, i < j \qquad (7)$

Notes

- $A_{[ij]}\;\; {\rm Arc}$ of district border corresponding to edge [i,j] of the transit graph
- $V_{nm}\,$ Non-negative flow variable corresponding to arc [n,m] of the district border graph $G\,$
 - $\alpha\,$ Sufficiently large scalar

Model Part III: Contiguity

Coupling zone border (between i and j) and flow (along n, m)

 $X_{ij} \leq V_{nm} \leq \alpha X_{ij} \qquad \forall \ [i,j] \in \mathcal{E}, [n,m] \in A_{[i,j]}, i < j \qquad (6)$ $X_{ji} \leq V_{mn} \leq \alpha X_{ji} \qquad \forall \ [i,j] \in \mathcal{E}, [n,m] \in A_{[i,j]}, i < j \qquad (7)$

Flow constraints

$$\sum_{[n,m]\in G} V_{nm} - \sum_{[m,n]\in G} V_{mn} = 0 \qquad \qquad \forall \ n \in N$$
(8)

 ${\cal N}$ Nodes of the district border graph ${\cal G}$

Notes

- $A_{\left[ij\right]}\;\; {\rm Arc}$ of district border corresponding to edge $\left[i,j\right]$ of the transit graph
- $V_{nm}\,$ Non-negative flow variable corresponding to arc [n,m] of the district border graph $G\,$
 - $\alpha\,$ Sufficiently large scalar

Model Simplification: District Borders Structure

Replacement of (5)–(7), i.e., symmetry and flow-border coupling by

$$V_{nm} = X_{ij} \qquad \forall \ [i,j] \in \mathcal{E}, [n,m] \in A_{[i,j]}, i < j \qquad (9)$$

Model Simplification: District Borders Structure

Replacement of (5)-(7), i.e., symmetry and flow-border coupling by

$$V_{nm} = X_{ij} \qquad \forall \ [i,j] \in \mathcal{E}, [n,m] \in A_{[i,j]}, i < j \qquad (9)$$

Constraining flow along a district border arc

$$\sum_{m \in G} V_{nm} \le \alpha \qquad \qquad \forall \ m \in N \tag{10}$$

For example, $\alpha=1$ avoids a flow quantity of 2 along border arc n10-n11

[n, n]

Fare Problem

Problem Statement

Find fare π , such that total expected revenue $F(\pi)$ is maximized.

- π : consider easily communicable prices. F.e. $\pi = 1, 1.1, 1.2, ..., 5$.
- Note: price degression can be easily considered

Fare Problem

Problem Statement

Find fare π , such that total expected revenue $F(\pi)$ is maximized.

- π : consider easily communicable prices. F.e. $\pi = 1, 1.1, 1.2, ..., 5$.
- Note: price degression can be easily considered

Determine π

- **(**) Set π to lowest/highest value
- Solve tariff zone planning problem (1) (10)
- Solution F is $F = F^*(\pi)$
- Set π to the next higher/lower value
- **(5)** Repeat 2 5 for all feasible values of π
- Choose highest $F^*(\pi)$.

Numerical Studies and Applications

Numerical Studies: Example "Ring Structure"

- Synthetic data
- GAMS/CPLEX; standard Windows-Notebook
- CPU \leq 2h per problem
- 10 different values for π
- Averages over ten random instances

$ \mathcal{I} $	connectivity	total CPU	avg. gap %	% opt
81	low	256.42	0	100
81	high	448.43	0	100
121	low	1,787.72	0	100
121	high	1,075.86	0	100
169	low	7,839.24	0.64	10
169	high	7,477.88	0.45	20
225	low	9,413.61	0.02	90
225	high	15,065.79	1.24	0

Application: San Francisco Bay Area

- Trips, travel-times, and travel-cost given at TAZ-level (Metropolitan Transport Commission (2008): Transportation 2035 Plan for the San Francisco Bay Area)
- Nearly 1500 TAZ ightarrow aggregation to PUMA
- Public transport graph on PUMA level: 60 nodes and 100 edges
- 20 values of π
- Transport demand model given by MTC
- Scenario: Unified tariff system for the entire bay area

Results

Basic scenario 2015 (MTC):

- Market share transit: 10%
- Revenue: 5.6 millionen USD/day
- Average price: 2.24 USD

Revenue maximization:

- Market share transit: 7%
- Revenue: 6.8 Millionen USD/day
- Average price: 3.89 USD

Results: Tariff Zone Maps

Demand maximization with respect to deviation from $F^*(\pi^*)$: δ

 δ =0.3, transit 11.4% δ =0.4, transit 12.4% δ =0.5, transit 13.2%

Summary & Outlook

Conclusion

- New problem
- Flexible structure
- Real world instances solvable by standard solver

Conclusion

- New problem
- Flexible structure
- Real world instances solvable by standard solver

What's next?

- Experiments on distict border structure
- Fix-and-Optimize heuristic
- Consideration of revenue sharing between service operators
- Application to road usage charging

Contact

Sven Müller Institute for Transport Economics Universität Hamburg Hamburg, Germany www.spatial-management-science.org @GeoOptimization

References

- Borndörfer, R., Karbstein, M., Pfetsch, M. (2012): Models for fare planning in public transport. *Discrete Applied Mathematics* **160** (18), 2591-2605.
- Gattuso, D., Musolino, G. (2007): A simulation approach of fare integration in regional transit services. In: Geraets, E. et al.: Algorithmic Methods for Railway Optimization. *Lecture Notes in Computer Science* 4359, 200-218.
- Hamacher, H., Schöbel, A. (2004): Design of zone tariff systems in public transportation. *Operations Research* **52** (6), 897-908.
- Hensher, D. (2010): Hypothetical bias, choice experiments and willingness to pay. *Transporation Research B* **44** (6), 735752.
- Jansson, K., Angell, T. (2012): Is it possible to achieve both a simple and efficient public transport zone fare structure? Case study Oslo. *Transport Policy* **20**, 150-161.

San Francisco MUNI Data

 $\bullet\,$ 200 nodes, 380 edges, 20 values of π

Dual graph

San Francisco MUNI Results

 Computational effort varies between seconds and several hours per problem

 π 1 USD, 33 zones

 π 2 USD (current situation)

 π^* 2.8 USD