

**CASPT 2015** 



## Constraint Propagation for the Dial-a-Ride Problem with Transfers

### Samuel Deleplanque(Speaker)<sup>1,2</sup>, Alain Quilliot<sup>2</sup>

Lab': 1-ULB (Belgium); 2-LIMOS (France)





- 1. Definitions and model
- 2. State of the Art
- 3. Heuristics based on Constraint Propagation:
  - DARP
  - DARPT
- 4. Experiments



# **Static DARP**

An instance is defined by:

- a fleet VH of K vehicles (with a capacity CAP and a <u>maximum</u> route time);
- a demand set:  $D = (D_i = (o_i, d_i, \Delta_i, F(o_i), F(d_i), Q_i), i \in I)$ 
  - (the origin node, the destination node, maximum ride time, two time windows, the load resp.);

And the related graph G = (V, E), which contains:

- the 2\*|K| Depot nodes,
- the origin and destination nodes of the demands.
- the arcs e in E endowed with <u>riding times</u>  $I(e) \ge 0$ ;



CASPT 2015



## Static DARP Focus on the Time Constraints

3 sets of time constraints:

- time windows (from the demands),
  - on the origin and destination nodes;
- maximum ride time (from the demands),
- maximum route time (from vehicles).
- => All of these constraints will be "handle" by constraint propagation.



#### **CASPT 2015**









## short state of the art

#### DARP

**Tabu search -** A tabu search heuristic algorithm for the static multi-vehicle diala-ride problem - J.-F. Cordeau et al., - Transportation Research – 2003 ;

#### Insertion techniques (IT)

A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem - J. Jaw et al. - Transportation Research – 1986.

#### **DARPT (rare...)**

Adaptive Large Neighborhood Search - Masson, Renaud, Fabien Lehuédé, and Olivier Péton. "The dial-a-ride problem with transfers." Computers & Operations Research 41 (2014): 12-23.

#### **PDPTWT**

**Branch-and-Cut** - Insertion techniques - VNS



### Heuristic based on constraint propagation Main ideas: the insertions

#### • Demand insertions: one after another

- selection of the demand according to the number of cars available for the specific demand (i.e. without violation of constraints):
  - => Random selection among the best candidates set,
- selection of the insertion parameters according to the smaller impact on the total route cost:
  - = > Random selection among the best candidates set.
- Example of insertion parameters: (k, O1, D2) for inserting the demand 3:



#### Heuristic based on constraint propagation Main ideas - Insertion Parameters

- For a given state of the routes, we check the feasibility and evaluate each insertion possible:
  - by constraint propagation of the three types of time constraints;
- After an insertion:
  - Update of the insertion parameters for the modified route k,
  - Add new parameters for k according to the new nodes in the route.



### Heuristic based on constraint propagation Main ideas - Monte Carlo Process

• We use a random number generator for:

UNIVERSITÉ

DE BRUXELLES

LIBRE

ULB

- the selection of the "best" demands,
- the selection of the "best" insertion parameters;
- We launch several replications of our heuristic using the same generator:
  - The process can be stopped once a first solution is obtained,
  - The process can be paralyzed.



#### UNIVERSITÉ UNIVERSITÉ LIBRE DE BRUXELLES S

# **Simple Insertion heuristic**

Initialize the K routes with depot nodes (departure & arrival) For all *j* in *D*, **FREE(j)** <- all the possible 4-uple (k, O, D, v) While *D* not empty pick up some demand *i* in *D* on a set of N1 demands with the lower number of vehicle available if FREE(i) is Nil reject i else select 4-uple (k, O, D, v) according to the N2 best v insert *i* in *k* by *D* and *D* and remove the 4-uple upgrade and update the 4-uples related to k in the FREE sets (creating the sets FREE by constraint propagation) route k **O**3 D3 D2 D1 02 DepotD DepotA

#### CASPT 2015 10

## (time) Constraint Propagation Inference Rules

11

 $y = Succ(\Gamma, x); \mathcal{FS}.min(x) + DIST(x, y) > \mathcal{FS}.min(y)$ **R1** |=  $\mathcal{FS}.min(y) \leq \mathcal{FS}.min(x) + DIST(x, y); NFact \leq y$  $y = Succ(\Gamma, x); \mathcal{FS}.max(y) - DIST(x, y) < \mathcal{FS}.max(x)$ **R**2  $\mathcal{FS}$ .max(x) <-  $\mathcal{FS}$ .max(y) - DIST(x, y); NFact <- x  $y = Twin(x); x \ll_{\Gamma} y; \mathcal{FS}.max(y) > \mathcal{FS}.max(x) + \Delta(x)$ |= **R**3  $\mathcal{FS}$ .max(y) <-  $\mathcal{FS}$ .max(x) +  $\Delta$ (x); NFact <- y  $y = Twin(x); x \ll_{\Gamma} y; \mathcal{FS}.min(x) \ll \mathcal{FS}.min(y) - \Delta(x)$ |= **R4**  $\mathcal{FS}.min(x) \leq \mathcal{FS}.min(y) - \Delta(x);$  NFact  $\leq x$  $x \in \Gamma$ ;  $\mathcal{FS}.min(x) > \mathcal{FS}.max(x)$ **R5 CASPT 2015** 



## Extended constraint Propagation for testing an insertion (DARPT)

Testing a transfer => Add the new precedence constraints in the set of inference rules

$$y = Twin(x); Status(x) = Out-Reload; FS.min(x) > FS.min(y) |= R6FS.min(y) <- FS.min(x); NFact <- y$$

y = Twin(x); Status(x) = Out-Reload; FS.max(x) > FS.max(y)|= R7FS.max(x) <- FS.max(y); NFact <- x



CASPT 2015 13

## **Experiments on the DARP**

| Inst.                  | $\mathbf{L}\mathbf{b}$ | Opti         | cpu*  | ΤI         | Gap                    | cpu |                                       |
|------------------------|------------------------|--------------|-------|------------|------------------------|-----|---------------------------------------|
| a2-16                  | 294,25                 | 294,25       | 1     | 294,25     | 0,00                   | 0   | Inst. : aK- D                         |
| a2-20                  | 344,83                 | 344,83       | 3     | $344,\!83$ | 0,00                   | 0   | Porf <sup>.</sup> Min Total Distances |
| a2-24                  | $431,\!12$             | $431,\!12$   | 9     | $431,\!12$ | 0,00                   | 0   | Terr. Wirr Total Distances            |
| a3-18                  | 300,48                 | $300,\!48$   | 5     | 300,81     | 0,11                   | 1   |                                       |
| a3-24                  | 344,83                 | $344,\!83$   | 8     | $344,\!83$ | 0,00                   | 2   | Cap < 2% and $CPU(c) <$               |
| <b>a3-</b> 30          | $494,\!85$             | $494,\!85$   | 10    | $495,\!26$ | 0,08                   | 16  | Gap < 2% and $CPO(S) < 100$           |
| a3-36                  | 583, 19                | 583, 19      | 105   | 589,86     | $1,\!14$               | 14  | 100s                                  |
| <b>a</b> 4 <b>-</b> 16 | $282,\!68$             | $282,\!68$   | 6     | $283,\!10$ | $0,\!15$               | 0   |                                       |
| a4-24                  | $375,\!02$             | $375,\!02$   | 6     | 376, 21    | 0,32                   | 94  |                                       |
| <b>a</b> 4 <b>-</b> 32 | 485,50                 | $485,\!50$   | 31    | $487,\!10$ | 0,33                   | 29  |                                       |
| <b>a</b> 4 <b>-</b> 40 | $557,\!69$             | $557,\!69$   | 8328  | $565,\!95$ | $1,\!48$               | 63  |                                       |
| <b>a</b> 4 <b>-</b> 48 | 668, 82                | NA           | 14543 | 700,30     | $\mathbf{N}\mathbf{A}$ | 31  |                                       |
|                        |                        | $\mathbf{v}$ |       | l          |                        |     | Less Good on very tight               |

J-F Cordeau. A Branch-and-cut Algorithm for the Dial-a-ride. Operations Research May/June, p573-586. 2006. S. Parragh. Introducing heterogeneous users and vehicles into models and algorithms for the dial-a-ride problem. Transportation Research Part C : Emerging Technologies. Volume 19, Issue 5, p912-930. 2011. **CASPT 2015** 14







CASPT 2015 <sup>15</sup>

# **New time constraints**





CASPT 2015 <sup>16</sup>

#### Creating the FREE2 set: UNIVERSITÉ DE BRUXELLES locating the transfer node



DIST(Dout, *Closure*(Dout,  $\Gamma 2$ ) is the smallest possible

CASPT 2015 <sup>17</sup>

FREE2 <- (i,  $\Gamma$ 1,  $\Gamma$ 2, O, Dout, Oin = *Closure*(Dout,  $\Gamma$ 2), D, Transfer Node)

ULB

LIBRE



## The General Algorithm When should we use the transfers?

- INSERTION1 and INSERTION2 solve the DARP and the DARPT, respectively.
- **Δ-Aux Current maximum ride time**

Algorithm  $\Delta$ -Aux <-  $\Delta$ ; Initialize  $\lambda$  with a large value  $\Lambda$ ; For p = 1..P do  $\Delta <- Update - \Delta (\lambda, \Delta)$ ; (T1, t1, Perf1, Reject1) <- INSERTION1(N<sub>1</sub>, N<sub>2</sub>); If Reject1 = Nil then (T, t, Perf, Reject) <- (T1, t1, Perf1, Reject1) Else (T, t, Perf, Reject) <- INSERTION2(T1, t1, Reject1, N<sub>7</sub>);  $\Delta <- \Delta$ -Aux ; Update  $\lambda$ :  $\lambda <- \lambda - 1/P.(\Lambda - 1)$ ; Keep the best result (T, t, Reject, Perf<sub>A, B, C</sub>(T, t)) which was obtained during this process.

### CASPT 2015 <sup>18</sup>



# Ride time evolution on a simple instance



Pr01 instance of:

Cordeau, J.-F. and Laporte, G. (2003). A tabu search heuristic algorithm for the static multi-vehicle dial-a-ride problem. *Transportation Research B* 37, 579–594.

### ULB UNIVERSITÉ LIBRE DE BRUXELLES Experimentations - DARPT Clustering



CINITS

VHi : « sub-platoon »
EPi : « sub-space »
30% local demands
70% general demands

$$\begin{split} &\Delta_i = \beta DIST(o_i, d_i), i = 1.. |D|, \beta \ge 1 \\ &F_{o_{i_{aller}}} = [690 + g; 690 + g + 10] \\ &F_{d_{i_{aller}}} = [690 + g; 690 + g + \Delta_i] \\ &F_{o_{i_{retoxr}}} = [840 - g - \Delta_i; 840 - g] \\ &F_{d_{i_{retoxr}}} = [840 - g - 10; 840 - g] \end{split}$$

CASPT 2015<sup>20</sup>



# Experiments - Results DARP Vs DARPT

| D  | Κ        | CAP | α    | β  | $\mathbf{EF}$ | Insert    | $Insert_{Tr}$ | Gap       |
|----|----------|-----|------|----|---------------|-----------|---------------|-----------|
| 32 | 4        | 6   | 0, 3 | 20 | 5             | 38,80     | 52,73         | 35,89     |
| 32 | 4        | 6   | 0, 3 | 20 | 15            | $54,\!59$ | 62,76         | 14,95     |
| 32 | 4        | 6   | 0, 3 | 20 | 30            | $61,\!84$ | 68,32         | $10,\!47$ |
| 32 | <b>5</b> | 6   | 0, 3 | 20 | <b>5</b>      | $49,\!74$ | 70,68         | 42,08     |
| 32 | 5        | 6   | 0,3  | 20 | 15            | $70,\!28$ | 86,02         | $22,\!40$ |
| 32 | 5        | 6   | 0,3  | 20 | 30            | 77,00     | 89,07         | 15,67     |
| 64 | 4        | 6   | 0,3  | 20 | 5             | $21,\!15$ | $28,\!48$     | 34,66     |
| 64 | 4        | 6   | 0,3  | 20 | 15            | 29,37     | $34,\!34$     | 16,94     |
| 64 | 4        | 6   | 0,3  | 20 | 30            | $35,\!29$ | $37,\!05$     | 4,97      |
| 64 | 5        | 6   | 0,3  | 20 | 5             | $27,\!60$ | 38,68         | $40,\!14$ |
| 64 | 5        | 6   | 0,3  | 20 | 15            | 39,06     | $46,\!12$     | 18,08     |
| 64 | 5        | 6   | 0,3  | 20 | 30            | $45,\!17$ | $48,\!20$     | 6,72      |
| 96 | 4        | 6   | 0,3  | 20 | <b>5</b>      | $15,\!72$ | $20,\!90$     | 33,00     |
| 96 | 4        | 6   | 0,3  | 20 | 15            | $22,\!43$ | $24,\!16$     | 7,74      |
| 96 | 4        | 6   | 0,3  | 20 | 30            | $25,\!92$ | $27,\!02$     | 4,24      |
| 96 | <b>5</b> | 6   | 0,3  | 20 | <b>5</b>      | $20,\!48$ | $28,\!24$     | 37,89     |
| 96 | <b>5</b> | 6   | 0,3  | 20 | 15            | $28,\!64$ | 32,62         | 13,93     |
| 96 | <b>5</b> | 6   | 0, 3 | 20 | 30            | 33,26     | $35,\!35$     | 6,30      |

<u>18 set of 5 instances</u> *EF*: *F*.*Max(x)* - *F*.*Min(x)*, *x origin or destination Insert*, *Insert*<sub>t</sub>: Rates of insertions *Gap*: 100.(*Insert*<sub>t</sub>- *Insert*)/(*Insert*)

21

**CASPT 2015** 



# Visualization of a solution

- small instance



CASPT 2015 <sup>22</sup>



# Visualization of a solution

- medium instance





**CASPT 2015** 

# Thank you!



# Any questions?

Samuel Deleplanque(Speaker)<sup>1,2</sup>, Alain Quilliot<sup>2</sup>, Lab': 1-ULB (Belgium); 2-LIMOS (France)

Robustness Tools in dynamic DARP. S. Deleplanque, A. Quilliot, In Recent Advances in Computational Optimization. Studies in Computational Intelligence, Vol. 580, 2015, pp 35-51, Springer

Constraint Propagation for the Dial-a-Ride Problem with Split Loads. S. Deleplanque, A. Quilliot, In Recent Advances in Computational Optimization. Studies in Computational Intelligence, Vol. 470. Springer