

\*Rey Juan Carlos University, Spain

\*\*TECHNICAL UNIVERSITY OF MADRID, SPAIN





**Conference on Advanced Systems in Public Transport** 

Rotterdam, The Netherlands July 19-23, 2015.

# Outline

### 1. Introduction

- 2. Rolling Stock Assignment
- 3. Train Routing
- 4. Crew Scheduling
- 5. Integrated Approach
- 6. Solution Approach



7. Case Study

### Introduction

Rapid Transit Railways profitability is critically influenced by its ability to construct profitable schedules.



### Introduction

Rolling Stock Assignment: among the most important factors that determine cost.

Train Routing: delay minimising assignment of fleets to operations.

Crew Scheduling: cost minimising assignment of crews to operations.

Current practice: sequential solving.

**Integrated models:** better feedback and choice of schedule and capacity.

Joint optimization big challenge:

- difficult to obtain consistent data.
- Results in huge problem sizes.



## Contributions

- Development of an **integrated schedule optimisation** model that includes rolling stock assignment, train routing and crew scheduling decisions.
- Introduction of **robustness** in the integrated model through different approaches (i.e., penalisation of difficult shunting operations, minimisation of propagated delays and minimisation of the need for human resources);
- Use of a heuristic based on Benders Decomposition so as to obtain good quality solutions;
- Development of case studies using realistic problem instances obtained from the network of the Spanish train operator RENFE.

# Outline

- 1. Introduction
- 2. Rolling Stock Assignment
- 3. Train Routing
- 4. Crew Scheduling
- 5. Integrated Approach
- 6. Solution Approach



7. Case Study

## Rolling Stock Assignment

Optimisation of train services' compositions, empty trains and the optimal management of train units in depot stations, all while satisfying passenger demand.

**Robustness:** minimise *difficult* shunting operations.





## **Rolling Stock Assignment: Model Formulation**

$$\begin{split} \min z &= \sum_{\ell \in L} \sum_{c \in C} oc_c km_\ell x_\ell^c + \sum_{\ell \in L^t} \sum_{a \in A_\ell} upc_{a,\ell} up_{a,\ell} + \sum_{s \in SC} \sum_{c,c' \in C} \mathcal{I}_s \cdot cc_s^{c,c'} \cdot \\ Objective function \\ &\sum_{c \in C} q_c x_\ell^c \geq pf_{a,\ell} - up_{a,\ell} \\ &\sum_{c \in C} x_\ell^c = 1 \\ &\sum_{c \in C} x_\ell^c \leq 1 \\ &\sum_{c \in C} x_\ell^c \leq 1 \\ &\forall \ell \in L^e \\ oc_s^{c,c'} &= \epsilon_s^{c,c'} + \delta \epsilon_s^{c,c'} \\ &y_{s_\ell}^c &= y_{s_f}^c \\ \end{split}$$
 Services 
$$\begin{aligned} \forall s \in SC, c, c' \in C \\ \forall s \in SC, c \in C \end{aligned}$$

+ flow conservation, fleet size, infrastructure capacity, etc.

## Case Study: Rolling Stock Assignment

| P Maiadahonda                        |          |         |          |      |      |       |       |       |  |
|--------------------------------------|----------|---------|----------|------|------|-------|-------|-------|--|
| $p_{a,\ell}^{3-4}, p_{a,\ell}^{4-1}$ | ° #C     | TSOC    | C EMO    | C I  | PEC  | #CC   | OI    | ST    |  |
| 0.5,3                                | 66       | 78331.  | 44 1635. | 76 3 | 3019 | 16    | 43.35 | 13.05 |  |
| $^{1,5}$                             | 64       | 80099.  | 76 1265. | 04 3 | 3554 | 20    | 42.30 | 24.56 |  |
| $^{3,6}$                             | 65       | 82896.  | 24 1281. | 36 4 | 4403 | 18    | 40.73 | 8.55  |  |
|                                      |          |         |          |      |      |       |       |       |  |
| Case                                 | TSOC     | EMOC    | #EMRH    | PEC  | #CC  | #CCRH | OI    | ST    |  |
| NoRob                                | 80099.76 | 1265.04 | 13       | 3554 | 20   | 4     | 42.30 | 24.56 |  |
| Rob                                  | 80413.68 | 1265.04 | 10       | 3248 | 20   | 3     | 42.11 | 28.54 |  |



# Outline

- 1. Introduction
- 2. Rolling Stock Assignment

3. Train Routing

- 4. Crew Scheduling
- 5. Integrated Approach
- 6. Solution Approach



7. Case Study

# **Train Routing**

Sequences for each train unit in the train network once the RS assignment for each service is known.

Robustness: minimise expected delay in train connections.



## **Train Routing: Model Formulation**

$$\begin{array}{ll} \min \ E\left[\sum_{i\in I}\sum_{j\in I}pd_{i,j}x_{i,j}\right] + \sum_{i\in I}\sum_{j\in I}cr_{i,j}x_{i,j} & \text{Objective function} \\\\ \sum_{j\in I}\sum_{\substack{t_i,t_j\in T\\t_j\geq t_i+\gamma_{i,j}}}co_{i,j}x_{i,j} = \alpha_i \quad \forall i\in I \\\\ \sum_{i\in I}\sum_{\substack{t_i,t_j\in T\\t_j\geq t_i+\gamma_{i,j}}}co_{i,j}x_{i,j} = \beta_j \quad \forall j\in I \\\\ x_{i,j}\in\{0,1\} & \forall i,j\in I & \text{Variables} \end{array}$$

## **Case Study: Train Routing**



Cubas-Ugena-Casarrubuelos

Illescas Ferial

Parla

Parla Hospi

# Outline

- 1. Introduction
- 2. Rolling Stock Assignment
- 3. Train Routing
- 4. Crew Scheduling
- 5. Integrated Approach
- 6. Solution Approach



7. Case Study

## **Crew Scheduling**



Assign crew resources to certain tasks derived from the schedule planning problem.

**Task/Operation:** shortest single operation between two stations (e.g., train services, empty services, composition changes).

**Duty:** sequence of tasks/operations to be performed by a single crew member withing a working shift.

## **Crew Scheduling: Model Formulation**

| $\min \sum_{i \in M} \sum_{j \in M} \sum_{d \in D} a^{i,j} e^{i,j} \epsilon^d_{i,j} + \sum_{i \in M} a^{i,j} e^{i,j} e^{i,j} \epsilon^d_{i,j} + \sum_{i \in M} a^{i,j} e^{i,j} e^{i,j$ | $b^i (1 - \sum_{d \in D} \alpha_i^d)$                     | Objective function |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------|
| $\sum_{d \in D} \alpha_i^d \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\forall i \in M$                                         | Tasks              |
| $\alpha_i^d + \delta_i^d \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\forall i \in M; d \in D$                                | Deadheading        |
| $\sum_{i \in M} \sum_{j \in M} e^{i,j} \epsilon^d_{i,j} \le 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\forall d \in D$                                         | Duties             |
| $\sum_{i \in M} c^{i,j} \gamma^d_{i,j} + \sum_{i \in M} d^{i,j} \beta^d_{i,j} + \sum_{k \in M} e^{j,k} \epsilon^d_{j,k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $_{k}=\alpha_{j}^{d}+\delta_{j}^{d}\forall j\in M,d\in D$ | Sequences          |
| $\sum_{i \in M} \sum_{j \in M} \beta_{i,j}^d \cdot et_i - \sum_{i \in M} \sum_{j \in M} \epsilon_{i,j}^d \cdot st_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\leq w_{max} \qquad \forall d \in D$                     | Breaks             |

+ other.

# Case Study: Crew Scheduling



| Ti  | me  | Duties | Uncovered tasks | Efficiency | Objective function |
|-----|-----|--------|-----------------|------------|--------------------|
| 89  |     | 0      | 369             | 19.56      | 699.35             |
| 191 | 1   | 48     | 106             | 24.19      | 252.45             |
| 279 | 9   | 54     | 73              | 32.65      | 196.19             |
| 968 | 8   | 93     | 5               | 54.76      | 105.41             |
| 122 | 27  | 82     | 6               | 56.63      | 94.88              |
| 372 | 27  | 75     | 1               | 64.42      | 77.85              |
| 864 | 400 | 66     | 1               | 70.97      | 68.85              |
|     |     |        |                 |            |                    |



# Outline

- 1. Introduction
- 2. Rolling Stock Assignment
- 3. Train Routing
- 4. Crew Scheduling

5. Integrated Approach

6. Solution Approach



7. Case Study

## **Optimization Model**

- We are **integrating** several sub-problems:
  - Rolling stock assignment;
  - Train routing;
  - And crew scheduling.







### **Optimisation Model**



## **Model Formulation**

### **Objective function**

$$\min z = \sum_{\ell \in L} \sum_{c \in C} oc_c km_\ell x_\ell^c + \sum_{\ell \in L^t} \sum_{a \in A_\ell} upc_{a,\ell} up_{a,\ell} + \sum_{s \in SC} \sum_{c,c' \in C} \vartheta_s \cdot cc_s^{c,c'} + \sum_{i,j \in I} \sum_{s,s' \in S} \sum_{c \in C} \left[ \psi \cdot E\left[ pd_{i,s}^{j,s'} \right] + \zeta \cdot cr_{i,s}^{j,s'} \right] \cdot seq_{i,s}^{j,s',c} + \sum_{i \in I} \sum_{s \in S} \sum_{j \in I} \sum_{s' \in EAS_s} \sum_{d \in D} e_{i,s,j,s'}^d \cdot \varepsilon_{i,s,j,s'}^d + \sum_{i \in I} \sum_{s \in S} \sum_{s' \in TAS_s} \left[ a_{i,s,s'} (1 - \sum_{d \in D} \chi_{i,s,s'}^d) \right]$$

## **Model Formulation**

### Constraints

- **Passenger demand** is linked to the capacity of the allocated train units;
- as for the **rolling stock**, each service gets at most one composition; flow conservation is ensured; fleet size; capacity of the stations is controlled;
- **coupling constraints** establish the relationship between rolling stock assignment, train routing and crew scheduling constraints;
- for train routing, each operation gets a predecessor and a successor operation (sequence constraints).
- and for **the crew scheduling**, every constructed duty is feasible and legal with respect labour rules.

## **Model Formulation**

**Coupling Constraints** 



# Outline

- 1. Introduction
- 2. Rolling Stock Assignment
- 3. Train Routing
- 4. Crew Scheduling
- 5. Integrated Approach

6. Solution Approach



7. Case Study

## Solution Approach

- The problem has three decision levels:
  - 1. first, the rolling stock assignment and shunting,
  - 2. second on the train routing,
  - 3. and third on the crew scheduling.
- To apply Benders decomposition:
  - o a master problem, feasible rolling stock and shunting schedules,
  - o a sub-problem which gives the train routing for each schedule,
  - $\circ$  and another sub-problem which provides crew schedules.

### Solution Approach: Benders Train Routing Sub-model



$$\min z = \left[\sum_{i' \in I'j' \in I'} \left(\psi E\left[pd_{i'}^{j'}\right] + \zeta cr_{i'}^{j'}\right) seq_{i'}^{j'}\right]$$

o:

$$\sum_{j' \in CO_{i'}^{j'}} seq_{i'}^{j'} = \alpha_{i'}^{it} \quad (\kappa_{i'}) \quad \forall i' \in I'$$

$$\sum_{i' \in CO_{i'}^{j'}} seq_{i'}^{j'} = \beta_{j'}^{it} \quad (\lambda_{j'}) \quad \forall j' \in I'$$

 $seq_{i'}^{j'} \in \mathcal{R}^+ \quad \forall i', j' \in I'$ 

### Solution Approach: Benders Crew Scheduling Sub-model

+ other constraints

### Solution Approach: Benders Master Model

$$\begin{split} \min z &= \sum_{\ell \in L} \sum_{c \in C} oc_c km_{\ell} x_{\ell}^c + \sum_{\ell \in L^t} \sum_{a \in A_{\ell}} upc_{a,\ell} up_{a,\ell} + \sum_{s \in SC} \sum_{c,c' \in C} \vartheta_s \cdot cc_s^{c,c'} + \omega + \xi \\ \omega &\geq \sum_{i \in I} \sum_{s \in S} \sum_{c \in C} \tilde{\alpha}_{i,c} \phi_{i,s}^c \kappa_{i,s}^{c,it} + \sum_{j \in I} \sum_{s \in S} \sum_{c \in C} \tilde{\beta}_{j,c} \varphi_{j,s}^c \lambda_{j,s}^{c,it} \qquad \forall it \in AOBC_{it} \\ \xi &\geq \sum_{i \in I} \sum_{s \in S} \sum_{s' \in TAS_s} \sum_{c \in C} \frac{1}{2} (\phi_{i,s'}^{c,it} + \varphi_{i,s}^{c,it}) \eta_{i,s,s'}^{it} + \sum_{i \in I} \sum_{s \in S} \sum_{s' \in TAS_s} \sum_{d \in D} \sum_{c \in C} \frac{1}{2} (\phi_{i,s'}^{c,it} + \varphi_{i,s}^{c,it}) \iota_{i,s,s'}^{d,it} + \sum_{d \in D} \nu_d + w_{max}(\varsigma_d + v_d) \\ \forall it \in AOBC_{it} \end{split}$$

+ rolling stock assignment constraints.



July 2015

# Outline

- 1. Introduction
- 2. Rolling Stock Assignment
- 3. Train Routing
- 4. Crew Scheduling
- 5. Integrated Approach
- 6. Solution Approach



7. Case Study

- Rapid transit network in Madrid.
- Line C5: 22 stations and 4 depots.
- 325 scheduled services.
- More than 430 tasks/operations.



- We compare four approaches:
  - ✓ The current solution;
  - ✓ Sequentially obtained solutions;
  - ✓ Partially integrated solutions;
  - ✓ And integrated solutions.





### Sequential approach: Crew Scheduling solution



### Integrated approach: Crew Scheduling solution



### Conclusions

- We have presented **an integrated approach** to the problems of rolling stock assignment, train routing and crew scheduling.
- To the best of our knowledge this is the **first attempt** in providing operational plans in such an integrated way.
- Because the resulting mathematical model is huge, we use a Benders decomposition based **heuristic** to solve the integrated approach.
- Computational experiments, drawn from **realistic cases**, show that the integrated approach outperforms all the rest of the approaches tested.

## THANK YOU

