Data-driven PT ridership prediction approach

including comfort aspects

dr. N. van Oort ir. T. Brands ir. M.P. Drost ir. M. Yap

Policy questions

- Impact of construction works (rerouting, ridership decrease)
- Simple efficiency improvements (schedule, fares)
- Dealing with budget savings (least damage)

Supporting decision making taking into account:

- Passenger impacts
- Costs (service) and revenues (tickets)
- Societal costs/benefits (value of time)

Available tools

	Multimodal model	Quick-Scan model
Modes	Car, public transport,	Public transport
	bike	
Scale	National, regional,	Urban
	urban	
Time	10-20 years	< 5 years
horizon		
Project type	Strategic, policies,	Tactical, changing lines,
	infrastructure changes	frequencies
Usage	Modal split, cost- benefit analysis	Route choice effects

New generation of models

Traditional (4-step) model Simple calculation

Multimodal (~PT)

Network

Complex

Long calculation time

Visualisation

Much data

Detailed results

PT only

Line

Transparent

Short calculation time

Only numbers

Little data

Assessments

Short term predictions

Elasticity method based on smartcard data

Smartcard data

Our research focus:

Connecting to transport model

- Evaluating history
- Predicting the future

Whatif scenario's

Transport Planning Software

- Stops: removing
- Shorter travel times and higher frequencies
- Route changes

Quick insights into

- Expected Ridership
- Expected costs (coverage)

Smartcard data

The Netherlands

- OV Chipkaart
- Nationwide (since 2012)
- All modes: train, metro, tram, bus
- Tap in and tap out
- Bus and tram: devices are in the vehicle

Issues

- Privacy
- Data accessibility via operators

Data

19 million smartcards; 42 million transactions every week

Connecting data to transport model

1) Importing PT networks (GTFS) (Open

data)

2) Importing smartcard data (Closed data)

4) Route choice and visualization options of transport model

What if?

What if: elasticity approach

Elasticities

Literature (e.g. Balcombe)

"Proven " rules of thumb

NOTE:

Simple changes

Short term

Primarly LOS changes

Accuracy

Crowding in PT

- Perception of in-vehicle time of travellers: a crowded vehicle is less attractive
 - Travel time may remain the same
- Dwell time may increase in a crowded vehicle
 - Boarding and alighting of passengers takes more time
- Very crowded vehicles result in denied boarding
 - Additional waiting time of one (or more) entire headway

Crowding model

- (perceived) in-vehicle time depends on crowding level
- Iterative assignment is needed
- Two values indicate capacity:
 - Number of seats
 - Crush capacity: maximum capacity of vehicle: sitting and standing passengers together

$$VC = \begin{cases} \frac{L}{C_{seats}} \\ \frac{L - C_{seats}}{1 + \frac{L - C_{seats}}{C_{crush} - C_{seats}}} \end{cases}$$

 Distinguish between vehicles with relatively large / small number of seats

Crowding model

$$T_{ij}^{per} = T_{ij} * F$$

$$C_{ij} = \alpha_1 T_{ij}^{per} + \alpha_2 W T_{ij} + \alpha_3 N T_{ij} + \alpha_4 F_{ij}$$

Douglas Economics (2006) MVA Consultancy (2008) Wardman and Whelan (2011)

Crowding model

Modelled time period

- Usually an entire peak period of 2 hours is modelled
- Some vehicles may be busier than other vehicles
- Evenness of the load distribution over this period
- → a correction factor may be applied that is lower than 2, to incorporate this effect

Case study: The Hague tram network

Network changes

 Increase frequency of tram line 15 from 6 to 8 times per hour during moring peak and evening peak

Results:

	Model without comfort	Model including comfort
Average work day	+8%	+10%

Result frequency increase line 15

Network changes

- Transformation of line 25 from bus line to tram line
- Due to larger vehicles, the frequency decreases

Conclusions

- Smartcard data supports ridership predictions
- Combining strengths of both worlds
- Comfort is explicitely taken into account
- Limited computation time needed for real size networks
- Benefits (revenues and societal) of certain measures become larger when comfort is taken into account
- Up to 30% underestimation of the effects when comfort is neglected
- Reduce crowding may compensate frequency reduction

Work in progress

- Validating the model using revealed data (smart card data), including behaviour during disturbances
- Incorporating denied boarding and extended dwell times
- Adding service unreliability costs
- Applying the quantified comfort effect in costbenefit analysis

Questions

Related papers:

http://nielsvanoort.weblog.tudelft.nl/

- Niels van Oort
- NvOort@goudappel.nl / N.vanOort@TUDelft.nl
- Ties Brands: <u>TBrands@goudappel.nl</u>

http://www.utwente.nl/ctw/vvr/People/brands/

- Marc Drost: <u>M.Drost@htm.net</u>
- Menno Yap: <u>MYap@goudappel.nl</u>