

Optimized Travel Menus with a Flexible Mobility on Demand System

Bilge Atasoy, Takuro Ikeda, Moshe Ben-Akiva

July 22, 2015

CASPT

Agenda

Motivation and background

Flexible Mobility on Demand (FMOD) system Concepts Modeling Framework

Simulation experiments

Myopic model v.s. Look-ahead model

Summary and future directions

Motivation and background

- Conventional public transportation services are not personalized.
 - Fixed route, Fixed schedule, Low frequency etc.
- Most people cannot afford to use taxi service on a daily basis.

ICT has a potential to break the vicious cycle?

Motivation and background

- Personalized transportation services using mobile apps are emerging
 - Uber, Lyft, GrabTaxi, etc.

Why not apply similar technologies to public transportation services?
 DRT, fixed route bus etc.

Problem

"How to increase operator profit and user satisfaction?"

Flexibility to demand fluctuations is necessary.

Currently, due to lack of the flexibility:

- Off-peak:
- => Drivers cannot find passengers
- On-peak:
- => Passengers cannot find drivers.

Some passengers may give up taking public transportation.

=> Operator lose revenue opportunity.

What is FMOD?

<u>F</u>lexible <u>M</u>obility <u>o</u>n Demand

- Real-time system
- Flexibility to demand fluctuations
- Concepts
 - Dynamic allocation of vehicle to service modes
 - Optimized travel menus are offered to the customer

5

Concept of FMOD (1/2)

Dynamic allocation of vehicle to service modes

Same vehicle is dynamically reassigned to different service modes according to the evolving demand.

Customer

Taxi: Flexible route, flexible schedule, private

Shared-taxi: Flexible route, flexible schedule, shared

Mini-bus: Fixed route, flexible schedule, shared

Concept of FMOD (2/2)

Travel menu is optimized in order to maximize operator profit / customer surplus

Example of travel menu (Mobile app)

(B) • ((n# 🗭 4 🗐 🛄 100% 🔜 9:19 PM Flexible Mobility On Demand Choose a ride 仲田公園 🔺 甲州街道 Options with different scheduled time and fare 日野市役 Google 06-22 (Mon) Taxi taxi Pickup 21:23 Dropoff 21:28 Fare ¥710 Shared-taxi 06-22 (Mon) shared-taxi Pickup 22:05 Dropoff 22:10 Fare ¥360 Mini-bus 06-22 (Mon) mini-bus Pickup 22:05 Dropoff 22:09 Fare ¥300 Cancel Back Choose döcomo

FUĴÎTSU

Dynamic allocation (Simulation)

FUJITSU

Red: Taxi, Green: Shared taxi, Blue: Mini-bus, Yellow: empty

Off-peak (AM 6:00) Taxi mode is dominant

On-peak (AM 8:00) Shared taxi / Mini-bus mode is dominant

Modeling framework

Product $p_{n,m,l}$

■ A service $(m \in M)$ on a vehicle $(n \in N)$ departing at a certain time period $(l \in L)$

N:set of vehicles,

M:set of service modes

L: set of time periods

Feasible product $p_{n,m,l} \in F$

- A product that satisfies the capacity and scheduling constraints
 - Vehicle capacity
 - No conflict with existing schedules
 - Deviation from preferred time window

Assortment

A list of feasible products on the travel menu

Modeling framework (cont.)

Feasible products set are generated taking into account:

- Capacity constraints
- Scheduling constraints

Phase 2. Assortment optimization

Assortment to be offered to the customer is optimized

- Maximize operator's profit and/or consumer surplus based on a choice model

Choice model

Logit model is used for estimating the choice probabilities for each product and the reject option

Utility functions are defined by:

Price

- In-vehicle travel time
- Out-vehicle travel time (for mini-bus)
- Schedule delay

$$\operatorname{Prob}_{n,m,l}(x) = \frac{x_{n,m,l} \exp(\mu V_{n,m,l})}{\exp(\mu V_{\text{reject}}) + \sum_{n' \in N} \sum_{m' \in M} \sum_{l' \in L} x_{n',m',l'} \exp(\mu V_{n',m',l'})}$$

Assortment optimization model

Myopic model

Consider the current request only

max $R_{current}(X)$

Look-ahead model

Take into account future demand

$$max \quad R_{current}(X) + R_{future}(X)$$

$$X = \{x_{n,m,l} \mid x_{n,m,l} \in \{0,1\}\}$$
 Decide which feasible products
are included in the assortment

 $x_{n,m,l} = 0$ $\forall p_{n,m,l} \notin F$ Only feasible products are included

Look-ahead model

Maximize expected profit from current customer and expected future profit

$$max R_{current}(X) + \sum_{l \in L} \tilde{r}_{l} \tilde{z}_{l}$$
s.t.
$$\sum_{n \in N} \sum_{l \in L} x_{n,m,l} = 1$$

$$z_{n,m,l} \leq Cap_{n,m,l} - x_{n,m,l}$$

$$\tilde{z}_{l} \leq \sum_{n \in N} \sum_{m \in M} z_{n,m,l}$$

$$\tilde{z}_{l} \leq \Phi^{-1} \sum_{m \in M} z_{n,m,l}$$

$$\tilde{z}_{l} \leq \Phi^{-1} \sum_{m \in M} z_{n,m,l}$$
Reserved capacity is limited by percentile
of the future demand distribution

$$\tilde{r}_{l}$$
Average future profit in time period l
 \tilde{z}_{l}
Total reserved capacity in time period l
 $z_{n,m,l}$
Reserved capacity of $p_{n,m,l}$
 $Cap_{n,m,l}$
Capacity of $p_{n,m,l}$
 Dem_{l}
Future demand in time period l

Simulation Experiment - Conditions

Network

- Hino city in Tokyo (approx. 9km × 8km)
- Simulation horizon: 4 hours
- Supply
 - Fleet size: 12 (8 seats)
 - Bus line: actual route
- Demand
 - OD: From Hino station to arbitrary location (based on population density)

Fare

- Taxi: \$5 (base) + \$0.5 (per 320m)
- Shared-taxi: 65% of taxi fare
- Bus: \$4 (flat rate)
- Operation Cost
 - Variable cost \$0.2 / km
 - Fixed cost \$200 / day / vehicle

(Yellow: Bus line)

Simulation Experiment - Scenarios

- Optimization models
 - Myopic
 - Look-ahead
- Objective functionProfit maximization
- Demand
 200, 400, 800 requests

Results

- In all cases, look-ahead model improves the profit compared to the myopic model.
- As demand increase, improvement in profit increase,

		% change in profit	% change in cons. surplus	# of served pax.	# of no- offers
200 requests	myopic	reference		170	0
	look-ahead	+2.92%	-0.55%	200(+30)	0
400 requests	myopic	reference		269	20
	look-ahead	+30.8%	+16.4%	304(+35)	7(-13)
800 requests	myopic	reference		335	145
	look-ahead	+85.8%	+2.00%	356(+21)	112(-33)

Results

In all cases, look-ahead model accommodates more passengers compared to the myopic model

		% change in profit	% change in cons. surplus	# of served pax.	# of no- offers
200 requests	myopic	reference		170	0
	look-ahead	+2.92%	-0.55%	200(<mark>+30</mark>)	0
400 requests	myopic	reference		269	20
	look-ahead	+30.8%	+16.4%	304(<mark>+35</mark>)	7(-13)
800 requests	myopic	reference		335	145
	look-ahead	+85.8%	+2.00%	356(<mark>+21</mark>)	112(-33)

Look-ahead model decrease the number of no-offers.

		% change in profit	% change in cons. surplus	# of served pax.	# of no- offers
200 requests	myopic	reference		170	0
	look-ahead	+2.92%	-0.55%	200(+30)	0
400 requests	myopic	reference		269	20
	look-ahead	+30.8%	+16.4%	304(+35)	7(-13)
800 requests	myopic	reference		335	145
	look-ahead	+85.8%	+2.00%	356(+21)	112(<mark>-33</mark>)

Conclusions

- Flexible Mobility on Demand (FMOD)
 - Dynamic allocation of vehicle to service modes
 - Optimized travel menus are offered to the customer
- We have developed and compared two optimization models.
 - Myopic model, Look-ahead model
- Look-ahead model improves the profit and accommodates more passengers compared to the myopic model
 - Especially in high demand scenarios.

Future research directions

Test with different scenarios

- Robustness for poor demand estimation
- Field test (Singapore, Japan etc.)
 - Dedicated + non-dedicated fleet
- Real world conditions
 - Traffic congestion, Cancelation / No show, Behind schedule
- Learning the behavior of customer through repeated usage

FUITSU

Online calibration of demand model parameters

Thank you for your attention!

ikeda.takuro@jp.fujitsu.com

FUJTSU

shaping tomorrow with you