

Bus control strategy application: case study of Santiago transit system

Ricardo Giesen giesen@ing.puc.cl

Juan Carlos Muñoz, Felipe Delgado & Pedro Lizana

CASPT 2015 Rotterdamm, July 20-23, 2015

Motivation

Proposed Headway Control Strategy

Simulation Results

Case Study Results

Conclusions

Bus bunching

Santiago, Chile

Bus bunching

Trajectories: Time vs. Distance

Bus bunching is a challenging problem

- Increases average waiting times
- Reduces transit comfort and reliability
- Pushes transit agencies to increase the number of buses

Solution: Control headways

Santiago Transit System (Transantiago)

- ✓ Operators pay fines based on 2 KPI:
 - ICF : Index of Frequency Compliance
 - Fines if vehicles per hour are less than those on the contracts
 - ICR : Index of Regularity Compliance
 - Fines if observed headways exceed a threshold

These have put into evidence the lack of cost-effective solutions available in the market

- Rolling horizon mathematical programming optimization model that explicitly considers capacity constraints (i.e. boarding denial)(Delgado *et al.*, 2012)
- Minimize user waiting times subject to system constraints
- Seeks to regularize operation and address bus bunching with real-time information
- Decision variable: holding times at bus stops, increase or decrease bus speed
- Buses do not follow a schedule: supply is adjusted to demand depending on real-time system conditions (traffic and bus headways and capacities)

$$\underset{h_{kn}, w_{kn}}{Min} \quad \frac{\theta_1 \cdot W_{first} + \theta_2 \cdot W_{in-veh} + \theta_3 \cdot W_{extra} + \theta_4 \cdot PE}{PAX}$$

$$W_{first} = \sum_{k=1}^{K} \sum_{n=e_{k}+1}^{e_{(k-1)}} \left\{ \frac{\lambda_{n}}{2} \cdot (td_{kn} - t_{0})^{2} + c_{n} \cdot (td_{kn} - t_{0}) \right\} + \sum_{k=2}^{K} \sum_{n=e_{(k-1)}+1}^{e_{k}} \left\{ \frac{\lambda_{n}}{2} \cdot (td_{kn} - td_{k-1n})^{2} \right\} + \sum_{n=e_{K}+1}^{e_{1}} \left\{ \frac{\lambda_{n}}{2} \cdot (td_{1n} - td_{Kn})^{2} \right\}$$

$$W_{in-veh} = \sum_{k=1}^{K} \sum_{n=2}^{N} mt_{kn} \cdot h_{kn-1} + \sum_{k=1}^{K} mt_{k1} \cdot h_{kN}$$

$$W_{extra} = \sum_{k=1}^{K-1} \sum_{n=e_{(k-1)}+1}^{e_k} w_{k-1n} \cdot (td_{kn} - td_{k-1n}) + \sum_{n=e_K+1}^{e_1} w_{Kn} \cdot (td_{1n} - td_{Kn})$$

Penalty for passengeres left behind if there is available capacity

$$\underset{h_{kn}, w_{kn}}{Min} \quad \frac{\theta_1 \cdot W_{first} + \theta_2 \cdot W_{in-veh} + \theta_3 \cdot W_{extra} + \theta_4 \left(PE \right)}{PAX}$$

$$PE = \sum_{k=1}^{K} \sum_{n=2}^{N} w_{kn-1} \cdot s_{kn} + \sum_{k=1}^{K} w_{kN} \cdot s_{k1}$$

Simulation Framework

Simulation results

- Both in BRT corridors and mixed-traffic services the following benefits have been observed:
 - Reduced waiting times and their variability
 - More regular headways: decreased regularity fines
 - More even bus loads: improved bus confort
 - Improved cycle time regularity making terminal operations smoother

Simulation results: video

Results: Vehicle cap. constraints & medium frequency

% of passengers that have to wait between:

	0-5 min.	5-10 min.	more than 10 min.
No control	78.90	17.52	3.58
Treshold control	89.26	9.80	0.95
HRT	92.46	7.50	0.04
HBLRT	93.74	6.19	0.07

Simulation Results: Bus Loads

(Capacity reached & high frequency)

a) No control

c) Proposed

Simulation Results: Cycle Time

(Capacity reached & high frequency)

a) No control

c) Proposed

Headway control software: Buzz Assist

- Develop software and implement solution in real bus services
- Retrieve real-time bus location and run the proposed optimization model on a rolling horizon framework every one minute
- Control instructions are then sent to any Android commercial or industrial tablet (with GPS and data plan) installed in the bus
- Software is flexible enough to adapt to existing transit system technology (GPS devices and consoles)
- Operates in headway and schedule based control systems

Software input information

- Static transit system data:
 - Bus services, operating programs, bus stop locations, etc: data in General Transit Feed Specification (GTFS) format (used by Google Transit)
- Real-time bus positions:
 - GPS devices already installed in buses
 - Industrial Tablet GPS
- Demand data:
 - Passive smart card information: OD matrices and historical bus stop arrival rates
- Segment speeds:
 - Combination of real-time speeds with historical speeds

Synoptic & dashboard web tool

 Visualize buses and control instructions, modify system parameters and download daily operating reports

Pilot tests in services B22 and B14

- 25 buses with Android industrial MDT and anti-theft and ruggedized support structures
- Started last week ... we are waiting for the first results
- Lessons: Not possible to use commercial tablets and need to control headways at the dispatching point

Pilot tests in B22 and B14 services

Pilot tests in B22 and B14 services

210 Pilot Plan

• Example of bus bunching in 210 service:

Integration to existing technological system

 Successfully integrated our technology to an existing fleet management system

Copyright: Mobius S.A.

210 Pilot Plan – Bus console

Pilot test on Line 210

• With less than 20% of fulfillment on holding instructions

Reduction on Penalties Paid by the operator Mar-Jun 2014

Integration to existing technological system

- Pilot test in service 210 since March 2014
- Results: 40-50% decrease in fines despite a 25% compliance rate
 System not operating

- 84 dual service
- Text instructions sent manually to already installed MDTs

How to measure regularity when there are no fines?

$$E(W) = \frac{E(H^2)}{2E(H)} = \frac{E(H)}{2} + \frac{Var(H)}{2E(H)}$$

E(H)/2 is a function of frequency (1/H), which depends on the number of buses (n) and the cycle time (T_c). (H = T_c / n)

Second term depends on the variability of headways. We aim to reduce this term

March 16th with Control vs. March 17th without Control

Control Point

April 14th with Control vs. April 21st without Control

May 26th with Control vs. May 25th without Control

Control Point

Trajectories C84 May 25th: No Control

Trajectories C84 May 26th With Control

Cycle times distribution

With control: Average cycle time = 63.4 min and standard deviation = 5.6 min Without control: Average cycle time = 69.5 min and standard deviation = 11.8 min

Need to control dispatches!

56

Conclusions

- We have a tool for effectively controlling buses in a BRT
- Waiting times were maintained (even decreased) along the route
- Reduction on vehicle cycle times and their variability allow for reductions on fleet size or improvements on level of service
- Implementation challenges:
 - Severe irregularity at the dispatching buses at terminal
 - Some buses operated without operative communication device
 - Driver compliance

Complementary technologies

- Android Mobile App for dispatching buses in terminals
- Android Mobile App for counting passengers in buses
- Buzz Santiago: sustainable mobility App (transit+bike)

Thank you!

- Zuñiga, F., Muñoz, J.C., Giesen, R. (2015) Estimation and prediction of dynamic matrix travel on a public transport corridor using historical data and information in real time. Submitted for publication.
- Hernandez, D., Muñoz, J.C., Giesen, R., Delgado, F. (2015) Analysis of Real-Time Control Strategies in a Corridor with Multiple Bus Services. Forthcoming Transportation Research Part B.
- Delgado, F., Muñoz, J.C., Giesen, R., Wilson, N.H.M. (2015) An integrated real time transit signal priority control for high frequency transit service. Forthcoming *Transportation Research Record*. (ISI)
- Lizana, P., Muñoz, J.C., Giesen, R., Delgado, F. (2014) Bus control strategy application: case study of Santiago transit system. Procedia Computer Science. 5th International Conference on Ambient Systems, Networks and Technologies (ANT-2014) Elsevier.
- Ortiz, F., Giesen, R., Muñoz, J.C., Lindau, L. A., Delgado, F. (2013) Analysis and evaluation of different headway control strategies for BRT: Simulated with real data. Proceeding WCTR. Rio de Janeiro, Brasil.
- Muñoz, J.C., Cortés, C., Giesen, R., Sáez, D., Delgado, F., Valencia, F., Cipriano, A. (2013) Comparison of Dynamic Control Strategies for Transit Operations. Transportation Research C, 28, 101-113. (ISI)
- Delgado, F., Muñoz, J.C., Giesen, R. (2012) How much can holding and limiting boarding improve transit performance?. Transportation Research Part B, 46B, 1202-1217 (ISI)
- Delgado, F., Muñoz, J.C., Giesen, R., and Cipriano, A. (2009) Real-Time Control of Buses in a Transit Corridor based on Vehicle Holding and Boarding Limits. *Transportation Research Record* 2090, 59-67. (ISI)

CEDEUS Centro de Desarrollo Urbano Sustentable

Bus control strategy application: case study of Santiago transit system

Ricardo Giesen giesen@ing.puc.cl

Juan Carlos Muñoz, Felipe Delgado & Pedro Lizana

CASPT 2015 Rotterdamm, July 20-23, 2015

