Design of a robust railway line system for sever winter conditions in The Netherlands

Maarten Trap / Dennis Huisman / Rob Goverde CASPT 2015 / Rotterdam / 22 July 2015

A robust railway line system for winter conditions / CASPT 2015

Overview

- Design methodology
- Case study
- Results
- Conclusions

Introduction

Introduction

• Extreme winters in NL since 2009/2010

- Train traffic OUT-OF-CONTROL
 - Rolling stock broken down
 - Malfunctioning infrastructure
 - Snowball effect
- Measures: Comprehensive winter programme

Research objective

- Current alternative timetable (LUD)
 - Reduced timetable, based on original line system
 - Robust by cancelling trains
 - Insufficient transport capacity
- Is another line system capable to transport more passengers, while conserving robustness?

Method

A robust railway line system for winter conditions / CASPT 2015

Design of alternative line systems

- Robust perspective
- Underlying principle
- Arbitrary or model
- Iterations to optimize the alternatives
 - Basic frequency
 - Calculate robustness and capacity shortage
 - Adapt line system

Passenger allocation

TRANS model

- Input: Origin Destination matrix
- Multinomial Logit (MNL) model for route choice
- Distribution over trains in time
 - Busiest hour
 - 2nd busiest hour
 - Off-peak

• Result: Passengers per train

Rolling stock assignment

- Assign compositions to trains
- Demand capacity of composition = shortage (≥0)
- **Objective: Minimize total capacity shortage**
- Constraints:
 - Maximum train length
 - Fleet size

Evaluation: Robustness

- Traffic intensity → Frequency & line density
- Control region attendance → Trains / region / hour
- Disruption risk → Operation of HS switches
- Weighted sum yields robustness index

A lower value is better

Case study: Dutch railway network

- A0: LUD
- A1: Short lines
- A2: DVL-based lines
- A3: Evading High-Speed switches
- Evaluating alternatives
 - Robustness index
 - Capacity shortage
 - >> Adapting the line system if possible
- Secondary 'commercial' evaluation

Robustness index vs. Transport capacity

A robust railway line system for winter conditions / CASPT 2015

Sensitivity Analysis

A robust railway line system for winter conditions / CASPT 2015

fuDelft 🐟 13

Evaluation of commercial effects

A robust railway line system for winter conditions / CASPT 2015

Ť∪Delft 🐟 14

Conclusions

- Based on the line system, robustness and transport capacity can be roughly estimated
- Enlarging trains in LUD not sufficient
- All alternatives are more robust
- All alternatives yield more transport capacity
 - Frequency = 2 satisfies most axes
 - Frequency = 3 on busy axes

Thank you for your attention! Are there any questions?