VALIDATING AND CALIBRATING A DESTINATION ESTIMATION ALGORITHM FOR PUBLIC TRANSPORT SMART CARD FARE COLLECTION SYSTEMS

Li He^{1,2}, Research Associate Neema Nassir³, Postdoctoral Research Fellow Martin Trépanier^{1,2}, Professor Mark Hickman³, ASTRA chair & Professor

Interuniversity Research Center on Entreprise Networks, Logistics and Transportation

THE UNIVERSITY OF QUEENSLAND

In this presentation

Introduction

• Why do we need to estimate a destination?

Background

Smart card data in public transport planning

Methodology

- Data source
- Destination estimation algorithm(s)

Results

- Accuracy, estimation phase, temporal analysis
- Tolerance distance calibration

Conclusion

Introduction

« Tap-in » smart card systems

- Smart card data is very useful to transport planners because it is a continuous source of data on ridership and travelers' habits
- Many smart card automated fare collection systems only validate the transactions at the entrance of vehicles/ stations (« tap-in » only systems)
- For some studies (ie. models fed by OD matrices), there is a need to estimate the destination for each boarding transaction

Introduction Aim of the research

- Through the years, a destination estimation algorithm has been developed to add « tap-out » information to the Gatineau, Canada, smart card dataset.
- Many studies use destination estimation algorithms based on the sequence of transactions during the day, but none really validated the results → Munizaga et al. tried to match smart card data and household surveys, mainly to validate survey responses
- The aim of this study is to apply to Australian « tap-in / tap-out » data the algorithms developed for Canadian datasets
 - To validate the algorithm
 - To help to calibrate the algorithm

Background Smart card data in public transport planning

- A smart card system collects data on every transaction aboard vehicles or stations
 - Date and timestamp, card number, fare type, route, location, etc.
 - Data is usually collected asynchronously (2-3 days delay)

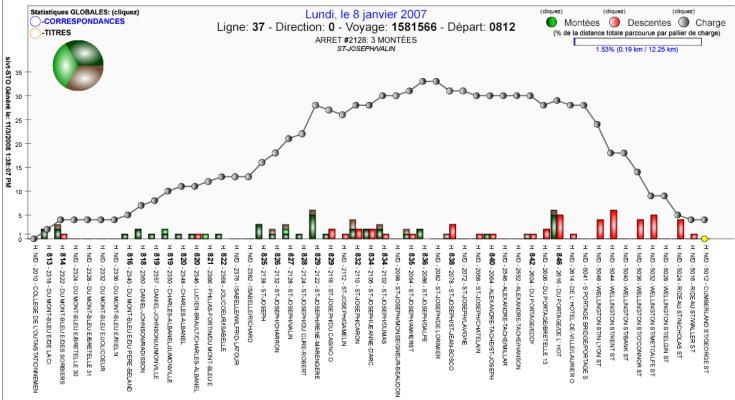
Data is useful for planning

- Universal and continuous source of data on ridership, evolution, by fare type, etc.
- Classification of passengers with data mining based on daily, weekly, monthly behaviour → welcome to big data community
- Calculation of performance indicators for both demand and supply
- Loyalty to service, turnover rates

Background

Smart card data in public transport planning \rightarrow destinations

- For each trip on public transit, having the destination is essential to:
 - Obtain load profile of the route, for each run, vehicle, stop, etc.
 - Obtain Origin-Destination matrices to be used in planning tools



Methodology Data source

senior and concession adult

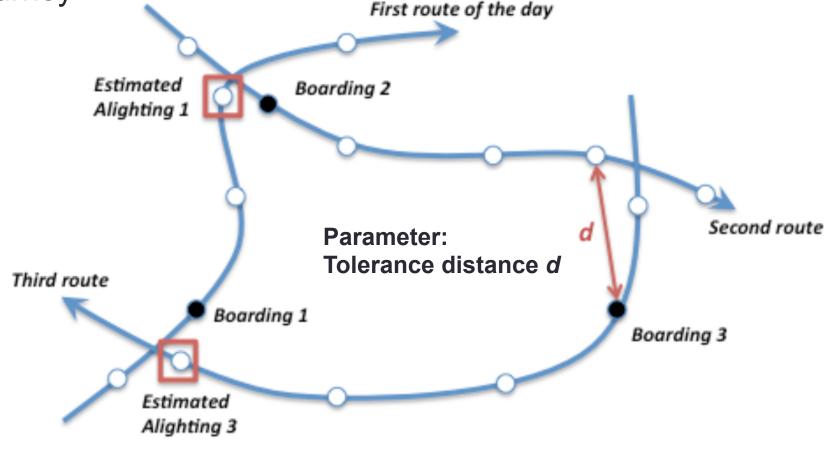
7

CASPT 2015 Rotterdam

- Go Card from Brisbane, Australia
- Used by approximately 85% of the travelers
- 40,341 trips made in March 2013 by a random set of card users
- Tap-in & tap-off information available: location of boarding and alighting stops
- + GTFS data of March 2013 for the transit network

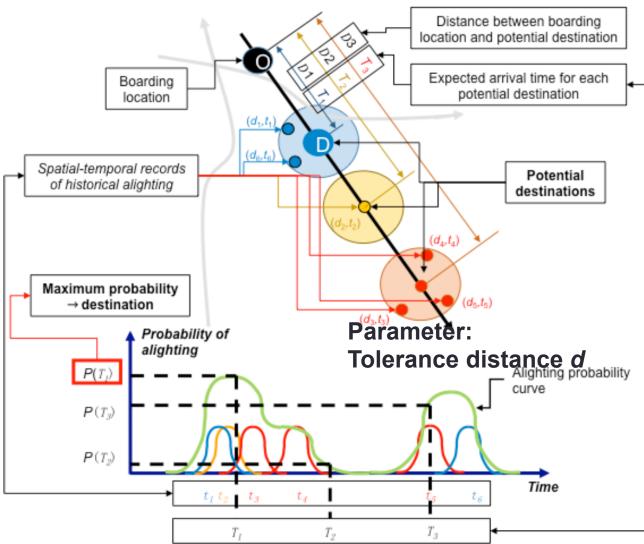
Methodology Destination estimation algorithm (part I)

This part is based on the sequence of trips made during a journey



Methodology Destination estimation algorithm (part II)

- This part is used to process
 « unlinked » trips by looking at the history of the cards
- Probability from a kernel density method



Methodology Validation

- The destination stop is **estimated** with the algorithms
- The estimated stop is compared to the real « tap-off » observation
- We use a **distance threshold** for the accuracy:
 - Estimated stop can be the same as the tap-off (distance of 0 metre)
 - Estimated stop can be near the tap-off (distance > 0 metre)
- We also try to calibrate the tolerance distance parameter of the parts I & II of the algorithm

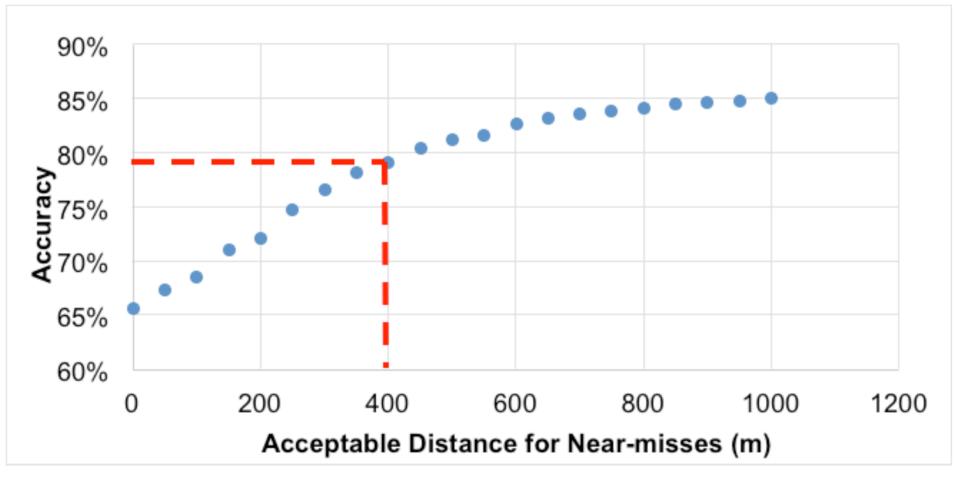
Methodology Estimation codes

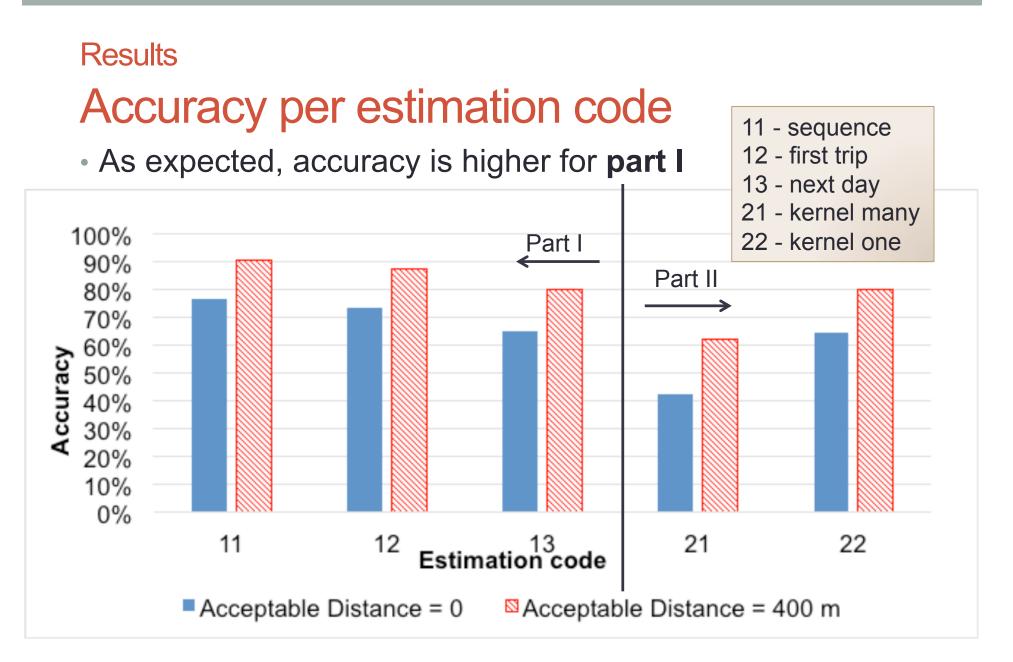
Given to every stop based on the step of the algorithms used to find destination

- 11 Part I, trip following another
- 12 Part I, destination is found using the first trip of the day (return to home)
- 13 –Part I, destination is found using the first trip of the next day
- 21 –Part II, destination found with the kernel density method, many choices
- 22 –Part II, destination found with the kernel density method, only one choice

Results Overall accuracy

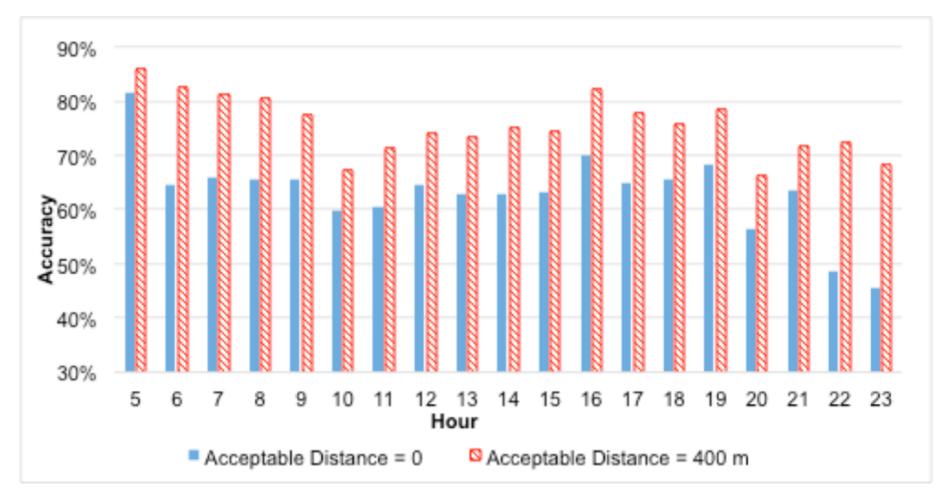
The accuracy of the algos varies from 65% at 0m to 80% at 400m distance threshold





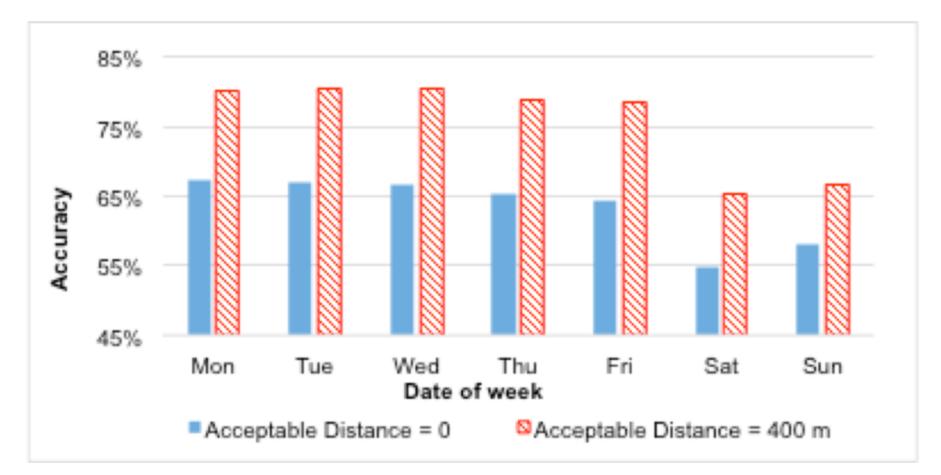
Results Accuracy per hour of the day

Accuracy is higher at peak hours (regular trips)



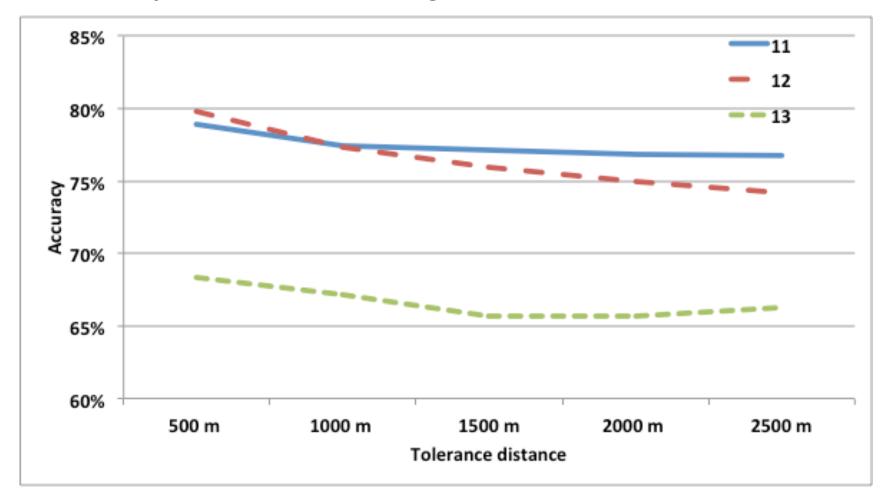
Results Accuracy per day of the week

Accuracy is higher on weekdays



Results Calibration of the tolerance distance (pt. I)

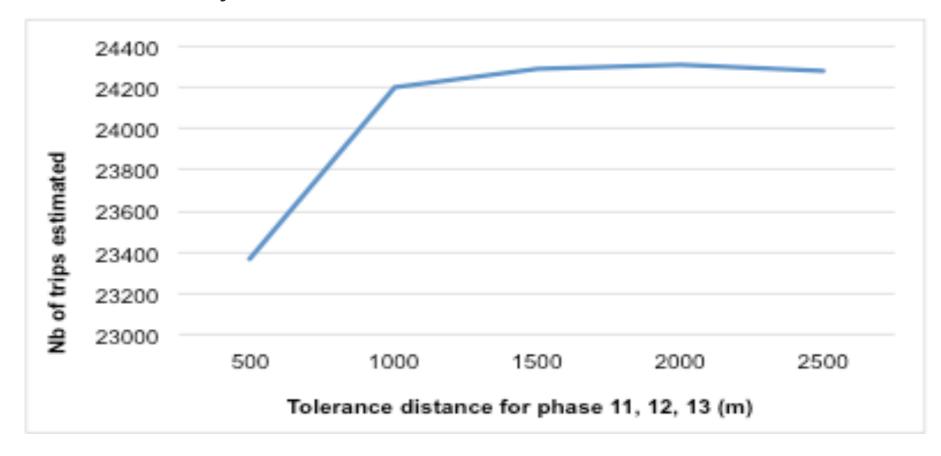
Accuracy decreases with higher distance



Results

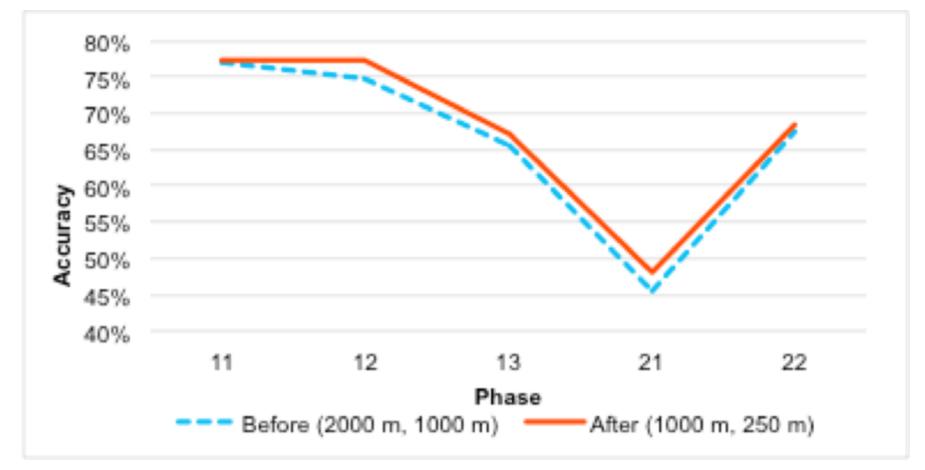
Calibration of the tolerance distance (pt. I)

 However, the number of destinations increases, so there is a trade-off to set between the tolerance distance and the accuracy



Results Calibration results

There is a slight improvement after calibration process
(+ 1 to 2%)



Conclusion

- We proposed a validation of the destination estimation algorithm with tap-in/tap-off data from Brisbane, Australia
- The results are: 65% accuracy at 0m distance threshold, 80% at 400m (+ 1 to 2% after calibration)
- Results may show that:
 - Many transit users walk or use other modes between transit trips, making it difficult to find true destination
 - Irregularities of trips make it difficult to estimate
- However, accuracy of 80% on almost 85% of the trips is a very good start to estimate an OD matrix for each route, zone, etc. → better than survey!
- Many indicators (pass-km, pass-hr) do not need full accuracy

Acknowledgements

THALES

