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Introduction

« Tap-in » smart card systems

Smart card data is very useful to transport planners
because it is a continuous source of data on ridership
and travelers’ habits

Many smart card automated fare collection systems only
validate the transactions at the entrance of vehicles/
stations (« tap-in » only systems)

For some studies (ie. models fed by OD matrices), there

IS a need to estimate the destination for each boarding
transaction



Introduction

Aim of the research

Through the years, a destination estimation algorithm
has been developed to add « tap-out » information to the
Gatineau, Canada, smart card dataset.

Many studies use destination estimation algorithms based
on the sequence of transactions during the day, but none

really validated the results > Munizaga et al. tried to match
smart card data and household surveys, mainly to validate survey
responses

The aim of this study is to apply to Australian « tap-in /
tap-out » data the algorithms developed for Canadian
datasets

To validate the algorithm
To help to calibrate the algorithm



Background
Smart card data in public transport planning

- A smart card system collects data on every transaction
aboard vehicles or stations
- Date and timestamp, card number, fare type, route, location, etc.
- Data is usually collected asynchronously (2-3 days delay)

- Data is useful for planning

- Universal and continuous source of data on ridership, evolution,
by fare type, etc.

- Classification of passengers with data mining based on daily,
weekly, monthly behaviour = welcome to big data community

- Calculation of performance indicators for both demand and
supply
- Loyalty to service, turnover rates
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- Obtain load profile of the route, for each run, vehicle, stop, etc.

- Obtain Origin-

Smart card data in public transport planning > destinations
essential to:

- For each trip on public transit,

Background

July 2015



Methodology
Data source

- Go Card from Brisbane, Australia
- Used by approximately 85% of the travelers

- 40,341 trips made in March 2013 by a random set of card
users

- Tap-in & tap-off information available: location of boarding
and alighting stops

+ GTFS data of March 2013 for the transit network
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Methodology

Destination estimation algorithm (part |)

- This part is based on the sequence of trips made during a
journey

First route of the day
Estimated
Alighting 1
Parameter: d Second route
Third route Tolerance distance d

Boarding 3

Estimated
Alighting 3
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Destination estimation algorithm (part Il)

- This part is
used to
process
« unlinked »
trips by
looking at the
history of the
cards

- Probability
from a kernel
density
method
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Methodology

Validation

The destination stop is estimated with the algorithms

The estimated stop is compared to the real « tap-off »
observation

We use a distance threshold for the accuracy:
Estimated stop can be the same as the tap-off (distance of 0 metre)
Estimated stop can be near the tap-off (distance > 0 metre)

We also try to calibrate the tolerance distance parameter
of the parts | & Il of the algorithm



Methodology

Estimation codes

Given to every stop based on the step of the algorithms
used to find destination

11 — Part |, trip following another

12 — Part |, destination is found using the first trip of the
day (return to home)

13 —Part |, destination is found using the first trip of the
next day

21 —Part Il, destination found with the kernel density
method, many choices

22 —Part Il, destination found with the kernel density
method, only one choice
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Results

Overall accuracy

- The accuracy of the algos varies from 65% at Om to 80%
at 400m distance threshold
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Results
Accuracy per estimation code
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11 - sequence

- As expected, accuracy is higher for part|  12-firsttrip
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- Accuracy is higher at peak hours (regular trips)

Accuracy per hour of the day

Results

July 2015
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Results

Accuracy per day of the week
- Accuracy is higher on weekdays
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Results

Calibration of the tolerance distance (pt. |)
- Accuracy decreases with higher distance

85% —11
- 12
- - e —— —
Z 75% . —
©
2
< 70%
65% ----------
60%

500 m 1000 m 1500 m 2000 m 2500 m
Tolerance distance




July 2015 CASPT 2015 Rotterdam 17

Results
Calibration of the tolerance distance (pt. |)

- However, the number of destinations increases, so there
IS a trade-off to set between the tolerance distance and
the accuracy
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Results

Calibration results

- There is a slight improvement after calibration process
(+ 1 to 2%)
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Conclusion

We proposed a validation of the destination estimation
algorithm with tap-in/tap-off data from Brisbane, Australia

The results are: 65% accuracy at Om distance threshold,
80% at 400m (+ 1 to 2% after calibration)

Results may show that:

Many transit users walk or use other modes between transit trips,
making it difficult to find true destination

Irregularities of trips make it difficult to estimate

However, accuracy of 80% on almost 85% of the trips is a
very good start to estimate an OD matrix for each route,
zone, etc. = better than survey!

Many indicators (pass-km, pass-hr) do not need full
accuracy
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