Real Time Public-Transport Operational Tactics Using Synchronized Transfers to Eliminate Vehicle Bunching Mahmood Mahmoodi Nesheli (m.mahmoodi@auckland.ac.nz); Avi Ceder (a.ceder@auckland.ac.nz) Vicente Gonzalez (v.gonzalez@auckland.ac.nz) Transportation Research Centre, University of Auckland, New Zealand The 13th CASPT, Session 2A (Paper 62) 19-23 July 2015, Rotterdam, The Netherlands **Outline:** How to make public-**1.Introduction** transport service more 2. Objectives efficient and comfort, thus to attract more

3. Methodology

4. Results

5.Conclusion

passengers ? THE UNIVERSITY

OF AUCKLAND

NEW ZEALAND Te Whare Wānanga o Tāmaki Makaura

Efficient Public-Transport (PT) Service

Advanced and attractive Public Transport (PT) service that operate reliably, and relatively rapidly, part of the passenger door-to-door chain with smooth and synchronized transfers, Ceder (2007)

Jacksonville, Florida, USA

Motivation

Observed Problems:

- >Unforeseen variations of arrival times, difficulty in maintaining PT vehicles' headway.
- These variations will create the undesirable vehicle (especially bus) bunching phenomenon.
- Uncertainty results in missed transfers, increase of passenger waiting and travel times, and of passenger frustration.

Possible Causes

Some uncertain and unexpected factors such as traffic disturbances and disruptions, inaccurate PT driver behaviour and actions, and random passenger demands

>Improper or lack of certain control actions

Lack of a prudent real-time transit control system is of major concern of publictransport (PT) operators

Objective of Study

Use the availability of real-time information to quickly correct headway irregularity and allows for increasing the chances of simultaneous transfers

> How to increase the attractiveness of the PT system?

Assumptions

- □ The vehicles are operated in a FIFO manner, with an evenly scheduled headway per route.
- Route information, including, travel times between stops, estimation of passenger arrival rates at each stop and average number of transferring passengers, are presumed known and fixed over the period concerned.
- Passengers on-board a vehicle will be informed of any action at the time of the decision so that they can choose to alight before or after the action.
- The PT drivers comply with the speed-change and holding instructions provided by their operator.

6

Route	Headway (min.)	Average number of passengers	
		Scenario1	Scenario2
1	5	257	514
2	7	1342	2648
3	5	958	1916

as the boundary for triggering an intervention, were set to ±20%.

Analysis of results: Performance Measures Scenario 1 Scenario 2 None H-SC None H-SC $\alpha = 0.5 \quad \alpha = 0.75$ $\alpha = 0.5$ $\alpha = 0.75$ $\alpha = 1$ $\alpha = 1$ Wstop 7828.32 3669.45 2417.39 11342.16 5918.34 2698.74 4784.12 5143.67 85.23 174 00 76.2 42.8 1345.29 311.48 112.78 SD 712.33 Improvement% 53.13 65.53 69.12 47.82 57.82 54.65 W^{in-vehicle} 182.4 1105.26 298.32 1362.3 645.3 821.84 042.34 1613.87 34.2 69.52 162.05 SD 95.3 122.33 86.2 101.25 93.21 -253.78 -350.57 -215.88 -356.66 -440.99 Improvement% -505.95 W^{missed} 1345.74 504.823 341.85 114.33 2224.3 631.12 445.8 383.5 SD 945.12 156.11 90.24 19.32 873.26 91.85 61.25 26.12 Improvement% 62.49 74.60 91.50 71.63 79.96 82.76 9356.46 4819.57 3862.42 3636.97 13864.78 7401 70 6592.22 7141.04 Total 151.76 SD 1183.99 243.95 131.03 1606.18 340.158 140.37 199.15 Improvement% 48.49 58.72 61.13 45.97 52.45 48.50 Bunching (%) 26.3 9.25 3.93 3.07 35.6 14.2 8.3 6.8 85.06 76.69 80.90 Improvement% 64.83 88.33 60.11 Note: H-SC = holding and speed-change.

The control strength for earliness was set to half control, semi-full control and full control. The constant value for tardiness is set to full control

Conclusions

- □ The tactic-based control strategy always results with a significant lower standard deviation of the scheduled headways than the no-control strategy
- □ Applying semi-control strength in Scenario 2 results with a significant lower passenger waiting time than in the no-control strategy. For Scenario 1 the semi-control and full-control strengths yield close results
- □ Vehicle bunching situations are reduced significantly by the use of the tactic-based control strategy

How to avoid rain of problems in making online transfers

20

Conclusions-cont.

□ The results show a better outcome of reducing headway variations for Scenario 1 (basedemand) than Scenario 2 (high-demand)

□ The control tactics using Scenario 1 exhibit smaller average cycle time and lower variability of the reliability measures than when using Scenario 2

> It certainly opens the window for a future research

Real Time Public-Transport Operational Tactics Using Synchronized Transfers to Eliminate Vehicle Bunching

Mahmood Mahmoodi Nesheli (m.mahmoodi@auckland.ac.nz); Avi Ceder (<u>a.ceder@auckland.ac.nz</u>) Vicente Gonzalez (v.gonzalez@auckland.ac.nz)

Transportation Research Centre, University of Auckland, New Zealand The 13th CASPT, Session 2A (Paper 62) 19-23 July 2015, Rotterdam, The Netherlands

End of the Presentation

Thank you !

23