Schedule-Free High-Frequency Transit Operations CASPT 2015 - Rotterdam

Gabriel E. Sánchez-Martínez Nigel H.M. Wilson Haris N. Koutsopoulos

Massachusetts Institute of Technology

Thursday, July 23, 2015

1 Framework

2 Methodology

3 Application

1 Framework

Methodology

Application

Schedule-Based Paradigm

Schedule-Free Paradigm

Gabriel E. Sánchez-Martínez (MIT)

2 Methodology

Application

General Methodology

Optimization Problem

 $\underset{x \in X}{\text{minimize}} \quad C(x;p)$

• C(x; p) is a general non-convex cost function covering the horizon

- passenger cost: waiting and in-vehicle time
- driver exit lateness cost
- plan complexity cost
- x is a candidate plan; X is the set of all feasible plans
- p is a set of exogenous parameters and initial conditions
- Constraints
 - vehicles may not exit later than latest allowed exit time
 - vehicle must exit at required exit locations
 - lower and upper bounds on holding times

Spatiotemporal Decomposition

Trip sequences are discrete, spatial variables

 $\underset{s \in S}{\text{minimize}} \quad C(s; d^*_s, p) \\$

- s is a candidate combination of trip sequences for all vehicles
- S is the set of all feasible trip sequence combinations
- d_s^* are optimal departure times for each given s

Departure times are continuous, temporal variables

 $\underset{d \in D}{\text{minimize}} \quad C(d;s,p)$

- d is a set of departure times for all vehicles
- D denotes the feasible space of departure times

Problem Complexity

$$\mathcal{O}\left(\sum_{i=1}^{\prod_{v\in V}|S_v|}k_i\right)$$

- S_v is the set of candidate trip sequences for vehicle v
- k_i is the complexity of optimizing departure times for a set of trip sequences i

Example: 20 vehicles, 5 sequences per vehicle, constant complexity k

$$\mathcal{O}\left(k\cdot 5^{20}\right)$$

Simplified Methodology

Decomposition into sequentially solved subproblems for each vehicle

$$\underset{s_v \in S_v}{\text{minimize}} \quad C(s_v; s_{\bar{v}}, d_s^*, p)$$

- s_v is a candidate trip sequence; S_v is the set of feasible trip sequences
- $s_{\bar{v}}$ are the trip sequences assumed for all other vehicles
- d_s^* are the optimal departure times for each trip sequence combination

Example: 20 vehicles, 5 sequences per vehicle, constant complexity k, g passes

$$\mathcal{O}\left(gk\cdot 5\cdot 20\right)$$

Optimization Algorithm

- 1 Generate basic trip sequences for each vehicle
- 2 Rank vehicles
- **3** Optimize trip sequence and departure times for each vehicle
 - 1 Enumerate feasible trip sequences
 - 2 Discard likely suboptimal trip sequences
 - Optimize departure times for each trip sequence
 - constrained even headway algorithm
 - constrained rolling horizon optimization
 - 4 Evaluate performance for each trip sequence
 - 5 Select best plan
- ④ Update operations plan

Modeling Variations

- trips between terminals
- short-turning (benign or aggressive)
- deadheading
- expressing (benign or aggressive, including skip-stop)

Generating Feasible Trip Sequences

1 Framework

2 Methodology

3 Application

Application

- 25 vehicles (not all operating simultaneously)
- each with capacity for 60 passengers
- trips dispatched over a period of 8 hours
- deterministic running times: no delay, moderate delay, severe delay
- Poisson demand, but with common random numbers
- vehicles should not exit more than 15 minutes after the last scheduled stop

Application: Running Time Delays

- The schedule assumes no delays
- The real-time operations planning algorithm assumes no further delays

Results: No Delay

Delay	Performance Measure	Short-	Turning SF	No Sh SB	ort-Turning SF
None	Waiting Time (min) Excess Waiting Time (min) In-Vehicle Time (min) Late Exits Max Exit Lateness (min) Trips Short Turns	2.6 0.0 9.6 0 0.0 190 0	2.6 0.0 9.5 0 0.0 192 3	2.6 0.0 9.5 0 0.0 190	2.6 0.0 9.5 0 0.0 190

• schedule-based and schedule-free paradigms perform similarly

Results: Moderate Delay

Delay	Daufarmanaa Maagura	Short-Turning		No Short-Turning	
Delay	Performance Measure	28	SF	20	SF
Moderate	Waiting Time (min)	3.3	2.7	3.4	2.7
	Excess Waiting Time (min)	0.7	0.1	0.8	0.2
	In-Vehicle Time (min)	10.8	10.7	10.7	10.7
	Late Exits	0	6	1	5
	Max Exit Lateness (min)	0.0	4.1	0.6	1.0
	Trips	190	190	190	186
	Short Turns	2	2	—	—

- schedule-free paradigm improves passenger experience
- schedule-free paradigm can lead to greater driver exit lateness
- allowance of short-turning can be counter-productive

Trajectory of Vehicle with Latest Exit: Moderate Delay

Schedule-free dispatch lateness

Dispatch Time with Schedule-Based Operations (hours)

1 Framework

2 Methodology

3 Application

- Under the SFP, vehicle trips are planned in real-time, utilizing real-time information.
- 2 The real-time planning problem is formulated as a cost minimization problem, but decomposed into related subproblems for each vehicle for tractability.
- **3** The SFP is feasible and potentially beneficial. However, it can lead to greater exit lateness when delays are unexpected.

Future Work

- 1 Stochasticity
- 2 Information modeling
- 3 Control strategies
- ④ Entry and exit plan optimization
- 6 Real-time planning optimization methods
- 6 Driver constraints
- Autonomous fleets
- 8 Organizing informal systems
- 9 Policy implications
- ① Tests on real transit lines

Acknowledgments

This research was funded by:

- National Science Foundation Graduate Research Fellowship Program, Grant No. 1122374
- Transport for London

and benefited from the support of:

- Bus Rapid Transit Centre of Excellence, funded by the Volvo Research and Educational Foundations (VREF)
- MIT's MISTI-Chile program

