

Template Based Re-Optimization of Rolling Stock Rotations

Ralf Borndörfer, Boris Grimm, Thomas Schlechte, Markus Reuther

Zuse Institute Berlin

CASPT 2015, Rotterdam

22. July. 2015

Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP

Rotation Template Connection Template

Computational Results

Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP

Computational Results

What do we do?

Railway undertakings (RU)

Line Planning

Timetabling

Rolling Stock Planning

Crew Scheduling

Real Time Management

(Cyclic) Rolling Stock Rotation Problem (RSRP) Given:

- Timetable with planned trips
- Set of railway vehicles
- Set of operational rules, e.g., costs for vehicles, limits for couplings

Goal:

- Set of (cyclic) Rotations, i.e., sequences of trips for the vehicles that:
 - Cover all trips
 - Minimize costs / fulfill operational rules

Infrastructure in cyclic standard week

fleet changes

infrastructure changes

timetable changes

Iockouts of drivers

change of laws

Railway undertakings (RU)

(Cyclic) Re-optimization RSRP (Re-Opt RSRP)

Given:

- Timetable with planned trips
- Set of rotations of railway vehicles
- Set of operational rules, e.g., costs for vehicles, limits for couplings

Goal:

- Set of (cyclic) rotations, i.e., sequences of trips for the vehicles that:
 - Cover all trips
 - Minimize deviations from given rotations
 - Fulfill operational rules

- optimization cost
 - vehicle cost
 - maintenance cost
 - deadhead distance cost
 - regularity cost
- re-optimization cost (w.r.t. reference solution)
 - cost per deviating vehicle composition (fleets, orientation, position)
 - cost per deviating rotation
 - cost per deviating connection / deviating deadhhead trip

Vehicle compositions schould not be changed ...

Zeit	Zug		Richtung	Α	В		С		D		E
06.12	D 773	Ci bis Sa 29 Mai 2006 bis 11 Juri 2006 aun 26 Mai 2006	Neumünster Hamburg Hamburg Skuttgart	<u></u>	12	1	10				
06.12	AZ	aufler 58 12.Jun 2006 his 9.Dez 2006	Hamburg Hamburg Stutkaet	<u></u>	12	11	10	2 <u>0 Å</u> L			
06.12	ALX 773	11 Dat 2006 the 27 Mai 2008	Neundinster Hamburg Hamburg Statboort	<u></u>	4 13	12	11	10	>		
07.12	ICE		Neumünster Hamburg Hamburg		26 1	2 24	2 23	2 22 1 10	31 14		
08.12	EC 775		Neumünster Hamburg Hamburg	<u></u>	4 12	11	10	2 2 2 1			
12.38	UEx 927	80 11 Dar 2005 bis 18 Dir 2005 So 26 Dar 2005 bis 9.Apr 2006	Neumünster Hamburg Hamburg	<u></u> 1	12	11	10	2 9 4 4			
12.38	X 927	nuch 2012er 2005 Ne und Sa 17 Apr 2006 bis 23 Apr 2006	Neumonster Hamburg Hamburg	<u></u> :	12 4	11	10 11	2 9 Å Å	>		
12.38	RE 927	So 1 Ma 2006 be 21 Mai 2006 auto 26 Der 2006, 1 Mai 2006	Neumünster Hamburg Hamburg	<u></u> 1		11	10 11	2 9 1 1	2 7		>
12.38	THA 927	12 Dec 2005 Bis 25 Dec 2005 High 11 Dec 2005 Buffer 35 26 Dec 2005 Bis 9.Apr 2006	Neumonater Hamburg Hamburg	<u></u> 1	1 12	11	10	2 9 Å L	2 7	6	2 5 2
12.38	MET 927	nicht 1 k.Cast 2006, 24 Dar 2006 Ci bis Sa 10 Apr 2006 bis 7 Mai 2006 auch 16 Apr 2006, 56 Apr 2006, 56 Apr 2006	Neumünster Hamburg Hamburg Nümberg	<u></u> 1	12	1	10	<u> </u>	6		
12.38	CIS 927	aufi 30 Apr 2006 aufier 31 8 Mar 2106 bis 27 Mai 2006	Neumünster Hamburg Hamburg Nümberg	<u></u> 1	12	11	10	2 9 1			
16.12	NZ 675		Neumaniker Hamburg Hamburg Skutkaert	<u></u> 1	4 - 12 -	1	10	>			
18.38	EN 809	28 Mar 2008 his 6 Day 2006	Neumünster Hamburg Hamburg Basol SBB	<u></u> !	2 2	2 3	2 4	2 5	2 6 1	7	2 2 1
18.38	CNL ***	11 Dag 2005 Sis 27 Maj 2008	Neumönster Hamburg Hamburg Basel SBB	<u></u> _	12	빌	10	2 9	2 7	<u>6</u>	2 5 2
				Α	В		С		D		E

Figure : images/wagenstandanzeiger

Figure : The tree indicates the *driving direction* on the track

Figure : A red vehicle with an *orientation* (first class in front).

Figure : A red vehicle with the *opposite* orientation (second class in front).

Figure : Two red vehicles with opposite orientations.

Figure : A red and a blue vehicle with different orientations.

Figure : 16 vehicle compositions for 2 vehicles

Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP

Computational Results

The Rolling Stock Rotation Problem (RSRP)

► V is the set of *departures and arrivals of timetabled trips* T

Definition (RSRP hypergraph)

Let (V, A) be a standard directed graph. The RSRP hypergraph is denoted by G = (V, A, H) with the set of hyperarcs $H \subseteq 2^A$.

The Rolling Stock Rotation Problem (RSRP)

► V is the set of *departures and arrivals of timetabled trips* T

Definition (RSRP hypergraph)

Let (V, A) be a standard directed graph. The RSRP hypergraph is denoted by G = (V, A, H) with the set of hyperarcs $H \subseteq 2^A$.

Most important remarks:

- A hyperarc is just a set of standard arcs (in this context).
- ► A subset of *H* (not *A*) is a solution (to be defined).

The Rolling Stock Rotation Problem (RSRP)

► V is the set of *departures and arrivals of timetabled trips* T

Definition (RSRP hypergraph)

Let (V, A) be a standard directed graph. The RSRP hypergraph is denoted by G = (V, A, H) with the set of hyperarcs $H \subseteq 2^A$.

Most important remarks:

- A hyperarc is just a set of standard arcs (in this context).
- ► A subset of *H* (not *A*) is a solution (to be defined).

Definition (RSRP)

Given a RSRP hypergraph G = (V, A, H) with a cost function $\mathbf{c} : H \mapsto \mathbb{Q}_+$. The RSRP is to find a cost minimal set of hyperarcs $R \subseteq H$ such that:

- $R = \bigcup R_r$ is a set of feasible rotations (pairwise disjoint).
- Each timetabled trip is covered by exactly one $h \in R$.

Hypergraph based model

$$x_h \in \{0,1\} \qquad \forall h \in H, \tag{3}$$

min
$$\sum_{h \in H} \mathbf{c}_h x_h$$
, (MP)
 $\sum_{h \in H(t)} x_h = 1$ $\forall t \in T$, (1)
 $\sum_{h \in H(v)^{\text{in}}} x_h = \sum_{h \in H(v)^{\text{out}}} x_h$ $\forall v \in V$, (2)

$$x_h \in \{0,1\} \qquad \forall h \in H, \tag{3}$$

min $\sum \mathbf{c}_h x_h$,	(MP)
h∈H	

$$\sum_{h\in H(t)} x_h = 1 \qquad \forall t \in T, \tag{1}$$

$$\sum_{h\in H(v)^{\rm in}} x_h = \sum_{h\in H(v)^{\rm out}} x_h \qquad \forall v \in V,$$
(2)

$$x_h \in \{0,1\} \qquad \forall h \in H, \tag{3}$$

$$\min \sum_{h \in H} c_h x_h, \tag{MP}$$

$$\sum_{h \in H(t)} x_h = 1 \qquad \forall t \in T, \tag{1}$$

$$\sum_{h \in H(v)^{\text{in}}} x_h = \sum_{h \in H(v)^{\text{out}}} x_h \qquad \forall v \in V, \tag{2}$$

$$x_h \in \{0, 1\} \qquad \forall h \in H, \tag{3}$$

$$x_h \in \{0,1\} \qquad \forall h \in H, \tag{3}$$

- ROTOR 1.0
 - in production since July 2013
 - integrates all technical details
- ROTOR 2.0
 - in production since July 2014
 - implements re-optimization

ROTOR's Solution Approach

- ► Solve the root LP of MP by a column generation procedure
- Compute integer solutions from the LP solution via problem specific branching techniques

ROTOR captures

- Operation of trips with coupled vehicles
- Orientation and position requirements for vehicles
- Maintenance requirements for vehicles
- Connection regularity via 'regularity arcs'

Markus Reuther, Ralf Borndoerfer, Thomas Schlechte, and Steffen Weider: Integrated Optimization of Rolling Stock Rotations for Intercity Railways accepted for publication in Transportation Science Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP Rotation Template Connection Template

Computational Results

Template concept for duty scheduling in [Borndörfer et al, 2013]

- Model 'regional' requirements with templates
- Solve pricing problems for templates separately

Regional requirements in RSRP sense: Rotations and trips

 Borndörfer, Ralf and Langenhan, Andreas and Löbel, Andreas and Schulz, Christof and Weider, Steffen
 Duty scheduling templates
 Public Transport 5 / 2013 Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP Rotation Template

Computational Results

Definition (Rotation Template)

The hypergraph $G_r = (V_r, A_r, H_r)$ is called *rotation template* for $r \in R$ where:

- G_R originates from G by creating a copy of each node, arc, and hyperarc of G for all $r \in R$
- Deleting all nodes, arcs, and hyperarcs which rotations mismatch r
- Adding a cost penalty of |h|δ to c(h) ∀ h ∈ H_r where h is not part of the reference rotation

Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP Rotation Template Connection Template

Computational Results

Definition (Connection Template)

Let:

- W set of all connections
- set of similar identifier $I_t \ \forall t \in T$
- ▶ set of neighborhood locations $N_I \forall I \in L$
- time windows $\Delta_{\tau} := [\alpha, \beta]$ for each arrival or departure time τ

The *connection template* for reference connection $w \in W$ is the set of hyperarcs $H_w \subseteq \bigcup_{r \in R} H_r$ where for $h \in H_w$ holds:

- trip identifier of h in the sets for similar identifier of w,
- the arrival and departure locations of h are in the corresponding neighborhood sets,
- arrival and departure times fit in the deviation time windows.

We set all connection deviation dependent cost to 0 for $h \in H_w$ if r(h) = r(w).

Definition (Re-Opt RSRP hypergraph)

Let R be a set of rotations with rotation templates $G_r \ \forall \ r \in R$. The Re-Opt RSRP hypergraph is denoted by

$$G_R = \left(\bigcup_{r\in R} V_r, \bigcup_{r\in R} A_r, \bigcup_{r\in R} H_r\right).$$

Definition (Re-Opt RSRP hypergraph)

Let *R* be a set of rotations with rotation templates $G_r \forall r \in R$. The Re-Opt RSRP *hypergraph* is denoted by

$$G_R = \left(\bigcup_{r\in R} V_r, \bigcup_{r\in R} A_r, \bigcup_{r\in R} H_r\right).$$

Definition (Re-Opt RSRP)

Given a Re-Opt RSRP hypergraph G_R with a cost function $\mathbf{c} : H \mapsto \mathbb{Q}_+$. The Re-Opt RSRP is to find a cost minimal set of hyperarcs $R \subseteq H$ such that:

- $R = \bigcup R_r$ is a set of feasible rotations (pairwise disjoint).
- Each timetabled trip is covered by exactly one $h \in R$.

MILP formulation of the Re-Opt RSRP

$$\sum_{r \in \mathcal{R}} \sum_{h_r \in H_r(t)} x_{h_r} = 1 \qquad \forall t \in \mathcal{T},$$
(4)

$$\sum_{h_r \in H(v_r)^{\text{in}}} x_{h_r} = \sum_{h_r \in H(v_r)^{\text{out}}} x_{h_r} \qquad \forall v_r \in V_r, r \in \mathbb{R}$$
(5)

$$x_{h_r} \in \{0,1\} \qquad \forall h_r \in H, r \in \mathbb{R}$$
 (6)

ROTOR's Template Solution Approach

- ► Solve the root LP of TMP by a column generation procedure
- Solve pricing problems to generate hyperarcs for each template separately
- Compute integer solutions from the LP solution via problem specific branching techniques

Markus Reuther, Ralf Borndoerfer, Thomas Schlechte, and Steffen Weider: Integrated Optimization of Rolling Stock Rotations for Intercity Railways accepted for publication in Transportation Science Introduction to RSRP

Mathematical Model for RSRP

Template Approach for Re-Opt RSRP

Computational Results

instance	trips	trip distance(km)	compositions	fleets	disturbed trips	recognizable trips	V	<i>H</i>
RSRP_1	788	555686	2	2	187	22	5702	10026804
RSRP_2	788	555686	2	2	189	22	5702	10027556
RSRP_3	665	265657	2	1	198	184	7680	16465044
RSRP_4	793	430770	11	5	50	7	8350	33113628
RSRP_5	785	426459	11	5	169	120	8330	33069736
RSRP_6	53	37501	5	3	40	40	498	138558
RSRP_7	670	263602	3	2	27	27	7650	16645161
RSRP_8	670	263602	3	2	27	25	7642	16596517

Table : Key numbers of the instances

Results without Rotation Templates

		no connect	ion templat	connection templates				
instance	rotation deviations	total costs	rotation dep. costs	computation time(s)	rotation deviations	total costs	rotation dep. costs	computation time(s)
RSRP_1	0	2372353	96248	14786	0	2364368	91248	9451
RSRP_2	0	2477205	197853	15653	0	2475174	189853	13396
RSRP_3	200	4146977	301069	5661	200	4145977	300069	4012
RSRP_4	15	5783234	148178	16299	15	5783234	148178	22105
RSRP_5	358	6308657	570314	37543	111	6001832	258314	19878
RSRP_6	0	497744	43323	10	0	476165	20323	51
RSRP_7	462	8565642	3534730	5338	455	8551786	3520730	4508
RSRP_8	484	8613483	3567730	3511	411	8528327	3482730	4091

Table : Computational results with ROTOR 2.4 and CPLEX 12.6 without using rotation templates performed on Intel(R) Xeon(R) CPU E31280 3.50 GHz with 16 GB RAM in multi thread mode with four cores.

Results including Rotation Templates

		no connec	tion templa	tes	connection templates				
instance	rotation deviations	total costs	rotation dep. costs	computation time(s)	rotation deviations	total costs	rotation dep. costs	computation time(s)	
RSRP_1	0	2314496	42220	6034	0	2313562	40441	1698	
RSRP_2	0	2456665	176853	5265	0	2331487	46166	1775	
RSRP_3	0	3946977	101069	2052	0	3866027	28424	1806	
RSRP_4	0	5745234	110178	6557	0	5666657	41572	6785	
RSRP_5	0	5827728	158314	17172	0	5808472	64592	8650	
RSRP_6	0	486744	25323	46	0	459663	4021	34	
RSRP_7	7	7959391	2913730	4492	7	6444310	1892170	2306	
RSRP_8	6	7983810	2913730	4076	6	6467000	1892290	2087	

Table : Key numbers of the computational results of ROTOR 2.4 and CPLEX 12.6 with using rotation templates performed on Intel(R) Xeon(R) CPU E31280 3.50 GHz with 16 GB RAM in multi thread mode with four cores.

We have shown that:

- the re-optimization case of the RSRP can be extended by the template concept
- although increasing the graph size templates are a powerful concept that allows us to compute cost minimal rolling stock rotations under a large variety of requirements for re-optimization scenarios
- even in practical size.

We have shown that:

- the re-optimization case of the RSRP can be extended by the template concept
- although increasing the graph size templates are a powerful concept that allows us to compute cost minimal rolling stock rotations under a large variety of requirements for re-optimization scenarios
- even in practical size.

Thank you for your attention!

This work has been developed within the Forschungscampus MODAL (Mathematical Optimization and Data Analysis Laboratories) funded by the German Ministry of Education and Research (BMBF).