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Train Timetabling Problem
Classical TTP (surveys Lusby et al., 2011; Cacchiani and Toth, 2012)
Given:
I infrastructure network

G I = (V I , AI)
I V I set of stations, crossings, switches, . . . ,
I AI set of tracks (single and double line tracks),

I set of trains R with

I predefined routes

G r = (V r , Ar ) ⊆ G I (paths),

I starting times t r
start ∈ R+ at first station,

I running times t̄ r : Ar → R+,

I Restrictions:

I station capacities

c : u → N, u ∈ V I ,

I headway times

ha : R × R → R+

Goal:
I find feasible schedules for all trains with small delays

Remark
All train schedules are completely free, no restrictions!
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Capacity Restrictions

I at each point in time, at most cu trains may be at station
u ∈ V I ,

I also possible for single directions:

3

1 2 2 3

4



Headway Constraints

I minimal safety distance between two trains r , r ′ ∈ R running
on the same arc a = (u, v) ∈ AI ,

I also for single line tracks and trains running in opposite
directions,

⇒ ha(r , r ′) ≥ t̄r
a
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Model

One often used model: time-expanded networks (e. g., Caprara
et al., 2002; Borndörfer and Schlechte, 2007; Fischer et al., 2008)
I discretize time horizon  T = {1, 2, . . . } (minutes),
I define train graphs G r = (V r , Ar ), r ∈ R,
I coupling constraints



Model
Train Graphs

G r
T = (V r

T , Ar
T ) with

V r
T =V r × T ,

Ar
T ={((u, tu), (v , tv )) : (u, v) ∈ Ar , tv − tu = t̄r

(u,v), tu, tv ∈ T}
∪ {((u, tu), (u, tu + 1)) : u ∈ V r

wait, tu ∈ T},

where V r
wait, r ∈ R, are the stations where r might stop and wait.

I introduce binary variables x r
a ∈ {0, 1}, r ∈ R, a ∈ Ar

T ,
I a timetable/schedule of r corresponds to a path

P = (u1, tr
start)...(un, tn) ⊆ G r

T

with

I u1 . . . first station of r ,
I un . . . last station of r ,

 Pr := {set of feasible train paths in G r
T}
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I train schedule corresponds to path
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Capacity Constraints
I at most cu trains are allowed to be at station u ∈ V r at the

same time:

K (u, t) :=
{

(r , a) : a = ((u′, t ′), (u, t)) ∈ Ar
T , r ∈ R

}
“arcs corresponding to r ∈ R being in u ∈ V r at t ∈ T”∑

(r ,a)∈K(u,t)
x r

a ≤ cu, u ∈ V I , t ∈ T .

t=43

t=39

t=40

t=41

t=42

t=39

t=40

t=41

t=42

t=43

St 1 St X St 3 St 23 St X St 25

Important, but we ignore them for the rest of the talk!
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Headway Constraints
I two train runs

I e = ((u, tu), (v , tv )) of r ∈ R and
I e′ = ((u, t ′

u), (v , t ′
v )) of r ′ ∈ R

must not be used both if

− h(u,v)(r ′, r) < t ′u − tu < h(u,v)(r , r ′) (*)

 H := {{(r , e), (r ′, e′)} : violate headways eq. (*)}

I collect all vectors x :
⋃

r∈R Ar → {0, 1} that do not satisfy (*)
for all r , r ′ ∈ R, a ∈ AI

H :=
{

x = (x r )r∈R : ∀ ((r , e), (r ′, e′)) ∈ H, x r
e + x r ′

e′ ≤ 1
}

I H is rather complicated, can be described (approximately) in
several ways

I inequality constraints, cutting of infeasible points,
I model feasible points explicitly
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Headway Constraints: Clique Inequalities
use inequalities to describe H

I simplest case:

x r
e + x r ′

e′ ≤ 1, {(r , e), (r ′, e′)} ∈ H,

I best case: let

C := {subsets of pairwise conflicting train runs} ,

then ∑
(r ,e)∈C

x r
e ≤ 1, C ∈ C

I in practise: use approximation

C̃ ⊆ C,  H̃ ⊃ H
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Headway Constraints: Configuration Networks
alternative formulation: configuration networks (Borndörfer and Schlechte, 2007)

I one network Ĝa = (V̂ a, Âa) for infrastructure arc a ∈ AI ,

I models feasible configuration, i. e., conflict-free runs of all trains over a,
I for each train run arc e = ((u, tu), (v , tv )) one corresponding

configuration arc e′ ∈ Âa,

t = 5

t = 4

t = 3

t = 2

t = 1
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end
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run Ãa

run

Ãa
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Ãa
hw

I configuration corresponds to sa-ta-path in Ĝa

 P̂
a = {set of feasible configurations in Ĝa} relaxation  P̃

a
rlx ⊇ P̂

a
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Ãa
wait

Ãa
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Ãa
hw

Ãa
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Models

maximize
∑
r∈R

〈w r , x r 〉

subject to x r ∈ P
r , r ∈ R,

x = (x r )r∈R ∈ H,

Cliques

maximize
∑
r∈R

〈w r , x r 〉

subject to x r ∈ P
r , r ∈ R,∑

r∈R

M r x r ≤ b,

Configurations

maximize
∑
r∈R

〈w r , x r 〉

subject to x r ∈ P
r , r ∈ R,

x = (x r )r∈R = (x̃ a)a∈AI ,

x̃ a ∈ P̃
a
rlx, a ∈ AI
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Lagrangian Relaxation

Solution approach for large scale instances: Lagrangian
Relaxation

I Cliques:

min
y≥0

yT b +
∑
r∈R

max
{
〈w r , x r 〉 − yT Mr x r : x r ∈ Pr

}
I Configurations:

min
p∈Rm

∑
r∈R

max
x r∈Pr

〈w r − pr , x r 〉+
∑
a∈AI

max
x̃a∈P̃a

rlx

〈pr , x̃a〉


I all coupling constraints are separated,
I solved using Bundle Methods (see, e. g., Hiriart-Urruty and

Lemaréchal, 1993)
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Comparing Both Approaches

I equivalent in theory (if subproblems are solved exactly)

Cliques

I coupling constraints hard to
separate,

I only rough relaxation H̃

possible
 weak bounds,

I fast convergence of bundle
method

Configurations

I coupling constraints easy to
separate,

I configuration subproblem
hard to solve, but good
approximations possible
 better bounds,

I very bad convergence of
bundle method
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Comparing Cliques and Configurations
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Example: Convergence

I two trains, A more important than B
I headway time: 10 minutes
I optimal: A runs at t = 1, B at t = 11

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9

t = 10
t = 11

I only the single clique constraint

10∑
t=1

(
xA

t + xB
t

)
≤ 1

is required!
I all configuration constraints

x r
t = x̃ r

t , r ∈ {A, B}, t = 1, . . . , 10,

are required!



Example: Convergence

I two trains, A more important than B
I headway time: 10 minutes
I optimal: A runs at t = 1, B at t = 11

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9

t = 10
t = 11

I only the single clique constraint

10∑
t=1

(
xA

t + xB
t

)
≤ 1

is required!

I all configuration constraints

x r
t = x̃ r

t , r ∈ {A, B}, t = 1, . . . , 10,

are required!



Example: Convergence

I two trains, A more important than B
I headway time: 10 minutes
I optimal: A runs at t = 1, B at t = 11

t = 1
t = 2
t = 3
t = 4
t = 5
t = 6
t = 7
t = 8
t = 9

t = 10
t = 11

I only the single clique constraint

10∑
t=1

(
xA

t + xB
t

)
≤ 1

is required!
I all configuration constraints

x r
t = x̃ r

t , r ∈ {A, B}, t = 1, . . . , 10,

are required!



Relaxation during the Solution Process

Clique Configuration

I the single (violated) clique constraint affects all arcs at the same time,
I the configuration constraints affect only a single arc
 much more iterations are required until all Lagrange Multipliers are
adjusted

I the bundle method does not “see” the structure hidden in the
configuration networks



A Combined Approach
Goal: combine good convergence of Cliques with good bounds of Configurations,

Cliques

maximize
∑
r∈R

〈w r , x r 〉

subject to x r ∈ P
r , r ∈ R,∑

r∈R

M r x r ≤ b,

Configurations

maximize
∑
r∈R

〈w r , x r 〉

subject to x r ∈ P
r , r ∈ R,

x = (x r )r∈R = (x̃ a)a∈AI x̃ a,

x̃ a ∈ P̃
a
rlx, a ∈ AI

Combined

maximize
∑
r∈R

〈w r , x r 〉

subject to x r ∈ P
r , r ∈ R,

Mx = Mx̃ ,

x̃ a ∈ P̃
a
rlx, a ∈ AI

I Clearly: x̃ a ∈ P̂a ⇒ b ≥ Mx̃ = Mx
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Scaling Bundle Method
I the Lagrangian relaxation of the configuration model reads

min
p

ϕ(y) :=

∑
r∈R

max
x r∈Pr

〈w r − pr , x r 〉+ max
x̃∈H
〈pr , x̃〉



I bundle method solves in each iteration the QP

min
p

{
ϕ̂(p) + u

2‖p − p̂‖2
}

I it can be shown, that solving the Lagrangian relaxation of the
combined model is the same as replacing this subproblem by

min
p

{
ϕ̂(p) + u

2‖p − p̂‖2(MT M)−1

}
I convergence proof “for free” (e. g., Bonnans et al., 2003)
I can also be used with approximations of M
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Numerical Experiments

I instances of RAS Problem Solving Competition 2012,
I small network with 100 nodes, 20 trains
I planning horizon of 9 hours,



Numerical Experiments
All three models
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Figure: Objective value after some iterations/time for all three relaxations.



Conclusion

I We compared different (theoretically equivalent) relaxations for the TTP.
I Clique based models converge fast, but have weak bounds.
I Configuration based models converge slowly, but have good bounds.
I Combined approach converges fast and has good bounds.

Is that all?
I Configuration models are an extended formulation for the TTP.
I allow for formulations of even stronger models (see our ATMOS 2015

paper),
I Combined approach/scaling bundle methods provide the algorithmic tools

to solve these models.
I Both approaches together are ongoing work.
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Thank you for your attention.
Questions?


