Journey Levels Integrated fare modelling with strategy-based transit assignment

Isabelle Constantin | zabelle@inrosoftware.com Daniel Florian | dan@inrosoftware.com

Strategies and states

- Strategy transit assignment is Markovian no 'history'
 - Integrated fares required network construction
 - Hard to limit or force mode combinations
- Journey levels
 - Add traveler state to strategy-based method
 - Can directly model network-wide integrated fares
 - Can directly force mode(s)

Background

- The original strategy-based transit assignment
- Does not remember nor need to know how travelers arrived at a node:
 - Did they walk from their origin?
 - Which transit mode(s) did they already board?
- Uses the same boarding/waiting parameters to determine how they will leave that node
 - Attractive lines and/or walk link(s)
 - Resulting impedance to destination

Initial vs transfer boardings at node X

Explicit network modification

- Create several layers in order to "control" how the travelers arrive at a given node
- Apply the appropriate parameters at the node
- Requires
 - Duplicating network elements
 - Adding links/segments to connect the layers

Initial boardings at X1 / transfer boardings at X2

Can become quite complex

A new approach – "Journey levels"

- Several "journey levels", each with distinct assignment parameters for
 - Boarding (time/cost and perception factors)
 - Waiting (headway fraction and perception factor)

0 ...

• Transition rules:

- Boarding a given transit mode may bring the traveler to another level or leave her at the same one
- Using aux. transit modes leaves the traveler at the same level
- No network modifications required

Ex 1 – Initial vs transfer boardings

- Different boarding penalties if travelers have
 - Not boarded transit yet \rightarrow "initial" (pay fare) level 0
 - Already boarded transit \rightarrow "transfer" (free) level 1
- Travelers
 - Walk from their origin to their first boarding at level 0
 - Go to level 1
 - Continue their trip at level 1 (further boardings → transfer penalty)

Ex 1 – Initial vs transfer boardings

Journey level		Boarding cost Next journey level		
		bus	metro	
0	Initial state	Pay fare 1	Pay fare 1	
1	Boarded transit at least once	Free transfer 1	Free transfer 1	

Ex 2 – Free transfers within mode

Consider the following fare scheme:

• Bus 5

- Free when transferring from bus
- Metro 7.5
 - Free when transferring from metro

Ex 2 – Free transfers within mode

Ex 3 – Discounted transfers between modes

Consider the following fare scheme:

- Bus 5
 - Free when transferring from bus/metro
- Metro 7.5
 - 2.5 when transferring from bus
 - Free when transferring from metro

Ex 3 – Discounted transfers between modes

Journey level	Fare Next journey level		
	bus	metro	
0 Initial state	5 1	7.5 2	
1 Boarded bus only	free 1	2.5 2	
2 Boarded metro	free 2	free 2	

No fare integration – transfers are avoided

Ex 2 – Free transfers within mode

• Travelers now incur an additional (free) transfer and choose the shorter in-vehicle travel time

Ex 3 – Discounted transfers between modes

• Travelers from Origin 1 use bus to access metro due to the discounted mixed mode fare rebate

Modification to the optimal strategy algorithm

- Duplicate nodes and segments by journey level to consider different
 - Labels
 - Successors / sets of attractive lines
 - \rightarrow Size of several vectors multiplied by number of levels
- In part 1 (compute optimal strategy to destination)
 - Apply relevant boarding penalties
 - At a node, consider alighting from segments for all possible levels
- In part 2 (assign demand on transit network)
 - Accumulate flows of all levels for a given node, link or segment for corresponding "base" element

Computational results

- Puget Sound regional network
 - 1 115 zones

(INRO

- 5 888 regular nodes
- 20 633 directional links
- 834 transit lines
- 25 856 transit segments

Impact on travelers for different fare schemes

Fare scheme	Lines per	Mean
	passenger	impedance
Full fare	2.24	174.60
One free bus transfer	2.56	171.97
Free bus transfers	2.86	170.35
Free transfers within mode	2.87	170.46

Free transfers within each mode

	Journey level	Fare Next journey level		
		bus	rail	ferry
0	Not boarded yet	5 1	7.5 2	10 3
1	Boarded bus only	Free 1	7.5 4	10 5
2	Boarded rail only	5 4	free 2	10 6
3	Boarded ferry only	5 5	7.5 6	free 3
4	Boarded bus+rail	free 4	free 4	10 7
5	Boarded bus+ferry	free 5	7.5 7	free 5
6	Boarded rail+ferry	5 7	free 6	free 6
7	Boarded all modes	free 7	free 7	free 7

Run times for different fare schemes

Fare scheme	Number of	CPU time	
	journey levels		
Full fare	1	6.2 s	
Free bus transfers	2	9.6 s	(x 1.5)
One free bus transfer	3	13.0 s	(x 2.1)
Free transfers within mode	8	38.6 s	(x 6.2)

Emme 4.2 on 2 Quad CPU Q6700 @ 2.66GHz, using 3 threads for the assignments

Computational results

- Salvador, Brazil
 - 1 055 zones

(INRO

- 13 383 regular nodes
- 30 695 directional links
- 1 128 transit lines
- 150 096 transit segments

Salvador integrated metro-bus fare scheme

- Metro
 - From metro (**m**): free
 - From integrated bus (**b** or **n**): discount
- Integrated bus (b and n)
 - From metro only: discount
 - From integrated bus prior to metro: free
 - From **b** to **b**: free (only once)
- Examples
 - $b \rightarrow n$ \$3.00 + \$3.00
 - $\mathbf{b} \to \mathbf{b}$ \$3.00 + \$0.00
 - $b \rightarrow m \rightarrow n$ \$3.00 + \$1.20 + \$0.00
 - $\mathbf{m} \to \mathbf{n}$ \$3.30 + \$0.90

Layered network approach

- Explicit layer creation
 - Python script using Emme's Network API
 - Network size increases
 - 13 383 \rightarrow 45 861 regular nodes
 - 30 695 \rightarrow 150 657 directional links
 - 1 128 \rightarrow 3 356 transit lines
 - 150 096 \rightarrow 985 600 transit segments
- Results interpretation is more involved/challenging

(INRO

Journey level approach

	Journey level	Fare Next journey level			
		m	b	n	other
0 F	ull fare must be paid	3.30	3.00	3.00	full
		1	2	3	0
1 P	aid full fare for m	free	0.90	0.90	full
		1	4	5	0
2 J	ust boarded b	1.20	free	3.00	full
		6	3	3	0
3 B	oarded n , bb or bn	1.20	3.00	3.00	full
		6	2	3	0
4 B	oarded mb	3.30	free	3.00	full
		1	0	0	0
5 B	oarded mn	3.30	3.00	3.00	full
		1	2	0	0
6 B	oarded bm or nm	free	free	free	full
		6	2	0	0

Number of passengers by mode

Execution times

Approach	Execution time
	(minutes)
Layered network	
Layer creation	~ 9
Assignment	~ 2
Total	~11
Journey level	
 Assignment (7 journey levels) 	~ 7

Emme 4.2 on 2 Quad CPU Q6700 @ 2.66GHz, using 3 threads for the assignments

Journey levels

- Models integrated fares
- Intuitive model specification
 o No network constructions
- Computationally scalable
- Network-wide integrated fare impacts
 - Not limited to stops or stations
- Forced/must-use mode
- Available in Emme 4.2

Journey Levels Integrated fare modelling with strategy-based transit assignment

Isabelle Constantin | zabelle@inrosoftware.com Daniel Florian | dan@inrosoftware.com

